
Published by DesignWrite U.S. $7.99

AUG/SEPT2002
ISSUE 1.1

ANIMATION SECRETS
THREE WAYS TO ANIMATE
BY JOE STROUT

REGEX EXPLAINED
BY MATT NEUBURG

INTERVIEW
A CHAT WITH ANDREW BARRY,
CREATOR OF REALBASIC

POSTMORTEM
DEVELOPING WRITER

REVIEWS
UNIHELP

WINDOWSPLITTER
MPCALC

PLUS
Q&A, ALGORITHMS,

BEGINNER’S CORNER,
REALCHALLENGE, &

MORE!

P R E M I E R E I S S U E

THE
REALBASIC

REVOLUTION
Now ANYONE

Can Program!

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 3

Peachpit Press has the help you need! Save20%
SAVE 20% during
MacWorld NYC 2002.
Stop by booth #631 or go to:
www.peachpit.com/forms/programming.asp
to purchase these titles and more!

Adobe Illustrator Scripting
By Ethan WIlde
ISBN:0-321-11251-2 • $35.00

AppleScript for Applications:
Visual QuickStart Guide
By Ethan Wilde
ISBN: 0-201-71613-5 • $21.99

C#: Visual QuickStart Guide
By Jose Mojica
ISBN: 0-201-88260-4 • $19.99

JavaScript for the World Wide
Web, 4th Edition: Visual
QuickStart Guide
By Tom Negrino & Dori Smith
ISBN: 0-201-73517-2 • $19.99

Perl and CGI for the World Wide
Web, 2nd Edition: Visual
QuickStart Guide
By Elizabeth Castro
ISBN: 0-201-73568-7 • $19.99

Python: Visual QuickStart Guide
By Chris Fehily
ISBN: 0-201-74884-3 • $21.99

XML for the World Wide
Web: Visual QuickStart
Guide
By Elizabeth Castro
ISBN:0-201-71098-6 • $19.99

Unix for Mac OS X: Visual
QuickPro Guide
By Matisse Enzer
ISBN: 0-201-79535-3 • $24.99

Hot Cocoa for Mac OS X
By Bill Cheeseman
ISBN: 0-201-87801-1 • $44.99

HTML 4 for the World Wide
Web, Fourth Edition: Visual
QuickStart Guide
By Elizabeth Castro
ISBN: 0-201-35493-4 • $19.99

Java 2 for the World Wide
Web: Visual QuickStart Guide
By Dori Smith
ISBN:0-201-74864-9 • $21.99

Sign up for a free PDF excerpt
from REALbasic for Macintosh:
Visual QuickStart Guide
Stop by booth #631

Coming Soon!

http://www.peachpitpress.com
http://www.rbdeveloper.com/subscribe/

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 3

T H E M A G A Z I N E F O R R E A L B A S I C ® U S E R S

FEATURES
 11 Postmortem: Writer by Daniel Kennett

Pioneers get the arrows. Learn from the experiences of someone else.

 14 Interview: Andrew Barry
REALbasic’s creator may no longer guide the software, but his vision still influences us all.

 16 The REALbasic Revolution by Marc Zeedar
What makes REALbasic so revolutionary?

 18 Three Ways to Animate by Joe Strout
Find out which animation technique is appropriate for your project.

 24 Regex Explained by Matt Neuburg
Understand the mysteries of powerful regex commands.

AUG/SEPT2002
ISSUE 1.1

R E A L b a s i c D e v e l o p e r i s n o t a f f i l i a t e d w i t h R E A L S o f t w a r e , I n c .

Postmortem
11

Revolution
16

Animate
18

Source Code 5
A word from the Publisher.

Beginner’s Corner 28
Just getting started? This is your
column!

Advanced Techniques 30
Tips for professionals.

Ask the Experts 32
Your questions, our answers.

Algorithms 34
The core of all programming.

Object-Oriented Thinking 36
Understanding OOP.

Intel Focus 37
Tips for cross-platform compiling.

The Topographic Apprentice. . . 38
Step-by-step 3D graphics.

From Scratch 40
Follow a project from concept to
completion.

AppleScript. 42
Using AppleScripts in RB.

Cocoa. 43
Cocoa lessons for the REALbasic
programmer.

Interface Design 44
Proper user interface design.

Beyond the Limits 46
Advanced secrets.

REALchallenge. 50
Test your programming skill and
win prizes!

REVIEWS, PROFILES, ETC.
REALbasic News 6

Carbon Events Plugin 2.5 8

CURLLinkButton 8

MPCalc . 9

Stimulus . 9

UniHelp 1.1 10

WindowSplitter 10

REAL Ads 49

REALbasic Developer (ISSN 1540-3122) is the ultimate source for tutorials, tips, and advanced techniques for programming with the REALbasic language. REALbasic Developer is published six times per year
and is distributed in print and PDF (electronic) editions. Subscription Rate: Standard print and PDF subscriptions for U.S. addresses are $32 and $16 respectively. To subscribe, or for other subscription options,
visit our website at <http://www.rbdeveloper.com/subscribe/>. Postmaster: Send address changes to REALbasic Developer, PO Box 66831, Scotts Valley, CA 95067-6831. Customer Service: For changes
of address, send both old and new address to <support@rbdeveloper.com> or write to us at REALbasic Developer, PO Box 66831, Scotts Valley, CA 95067-6831. Please include your account number with all
correspondence. Back Issues: Previously published issues may be ordered from our website at <http://www.rbdeveloper.com/backissues/>.

COLUMNS

Regex
24

http://www.rbdeveloper.com/subscribe/
mailto:support@rbdeveloper.com
http://www.rbdeveloper.com/backissues/

4 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 5

is published by DesignWrite,
P.O. Box 66831, Scotts Valley, CA 95067-6831
and has no affiliation with REAL Software, Inc.

Publisher & Editor
Marc Zeedar editor@rbdeveloper.com

Editorial Board
Joe Strout, REAL Software jstrout@rbdeveloper.com
Matt Neuburg, Author matt@rbdeveloper.com
Erick Tejkowski, Author etejkowski@rbdeveloper.com

News Editor
Chris Willis news@rbdeveloper.com

Review Editor
Brian Jones reviews@rbdeveloper.com

Copy Editors
Toby Rush trush@rbdeveloper.com
Tim Lisauskas timm@rbdeveloper.com

Advertising Coordinator
Marc Zeedar ads@rbdeveloper.com

Webmaster
Sylvain Le Borgne webmaster@rbdeveloper.com

Layout & Design
Marc Zeedar mzeedar@rbdeveloper.com

Artwork
Scott Melchionda (Cover) scott@scoo.com
Lloyd Colbaugh (Arby) lcolbaugh@rbdeveloper.com

Columnists
Didier Barbas dbarbas@rbdeveloper.com
Sean Beach realchallenge@rbdeveloper.com
Colin Cornaby ccornaby@rbdeveloper.com
Thomas Cunningham tcunningham@rbdeveloper.com
Dean Davis ddavis@rbdeveloper.com
Will Leshner wleshner@rbdeveloper.com
Joseph Nastasi jnastasi@rbdeveloper.com
Matt Neuburg matt@rbdeveloper.com
Thomas Reed thomasreed@rbdeveloper.com
Toby Rush trush@rbdeveloper.com
Christian Schmitz cschmitz@rbdeveloper.com
Seth Willits help@rbdeveloper.com
Charles Yeomans cyeomans@rbdeveloper.com

About the Mascot
Arby™ is the official mascot of REALbasic
Developer magazine. He’s an amateur
but determined REALbasic programmer,
spending late nights trying to make
nthField a few milliseconds faster. He’s
your guide for all things REALbasic.
Watch for him in the magazine and on the RBD website.

REALbasic® is a registered trademark of REAL
Software, Inc. It and other trademarks used within
this publication are the property of their holders and
are used only for editorial purposes with no intent
to infringe. REALbasic Developer, the REALbasic
Developer logo, and the Arby mascot name and
icon are trademarks of DesignWrite.

Contents Copyright © 2002 by DesignWrite.
All Rights Reserved

GOOD LUCK!
Good luck with the launch of REALbasic
Developer magazine. I’ll be looking forward
to reading it.

Michael Swaine
Author, REALbasic QuickStart Guide

(forthcoming)

MASCOT GREETINGS
I just wanted to thank you for the honor
of being named as the official mascot of
REALbasic Developer! My family is so
proud of me. Now I have something up
on my second cousin, Max! (He works for
MacAddict.)

Arby
arby@rbdeveloper.com

CAN’T WAIT
Thank you so much for launching this
magazine. I can’t wait for my first issue
to arrive!

Frank Palayaman
New York

LONG LIFE
Long life to this new magazine!

Eric

ONE CLICK
On the front page of the RB Dev Mag
site, there’s a calendar image with a week
circled, talking about when the first issue
will come out. By any chance, is the calendar
shown in the image one of the One Click
calendars?

Kevin Ballard

Yes, it is! We’re big One Click fans here
at RBD: http://www.designwrite.com/
oneclick/

R E A L L E T T E R S
O P I N I O N & F E E D B A C K

Send your Letters to the Editor to
letters@rbdeveloper.com. You must
include your full name and valid
email address, but we will withhold
publishing either on request. All
letters may be edited for content
or length, and become the property
of REALbasic Developer.

How to Download Source Code
Article resources available at:

http://ww.rbdeveloper.com/subscriber/

Every article in REALbasic Developer includes an “RBD number” at the end
presented like this:

RBD# 1234

To retrieve an article’s resoures follow these steps:

Step 1: Go to the password-protected RBD subscriber website
(at www.rbdeveloper.com/subscriber/).

Step 2: Log in using username: subscriber and password: yogurt. (This
password changes for each issue of RBD. Please do not share this password
with non-subscribers.)

Step 3: In the Get Article search field, type in the RBD number of the article
you need. All resources for that article — source code, graphics, demo projects,
etc. — will be available for instant downloading.

http://www.rbdeveloper.com/subscriber/
http://www.rbdeveloper.com/subscriber/

4 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 5

The Mac brought computers to

people who weren’t (and didn’t

want to be) computer literate.

REALbasic brings programming

to people who aren’t (and don’t

want to be) computer scientists.

When I first began using REALbasic,
I was amazed: how long had this

tool existed without me knowing about
it? It seemed cruel I hadn’t discovered
it earlier.

I’d always longed to program my
Macintosh, but I hated the tedious business
of learning the Mac’s complex Application
Programming Interfaces (APIs). I spent
hundreds of dollars on massive program-
ming books and Inside Macintosh volumes,
only to watch them become obsolete before
I had time to learn them!

REALbasic was the answer.
But despite its simplicity and elegance,

REALbasic is a true programming envi-
ronment. It can be obtuse, especially for
larger projects.

The Internet is an invaluable resource
for RB users, but I still longed for a single
source for all things REALbasic: a regular
magazine, professionally designed and
written, with all the quality of Macworld.
That dream is finally a reality.

A Magazine’s Journey
In August 1999 I had the idea for

REALbasic Developer. I was thinking
solely of a subscriber-based PDF “ezine.”
I posted a survey on my website and the
results showed that people would be
willing to pay for a quality REALbasic
publication.

With a budget of zero dollars, I assembled
a team of volunteers and began making
plans for the first issue. It soon became
clear, however, that the project was more
complicated than I’d anticipated. The

volunteers were not always reliable and
I was working a full-time job myself; I
couldn’t make up the slack.

It was a difficult decision, but I put the
magazine on hold. The last thing I wanted
was to launch and immediately fold,
damaging the credibility of the concept
in the process.

I had no intention of abandoning
REALbasic Developer permanently. I
hoped at some point in the future I’d be
in a position to afford to quit my day job
and launch the magazine properly.

REALbasic to the Rescue
During this time, I’d been working on

a of couple novels, and I’d been horribly
frustrated by the complex task. With a spurt
of inspiration, I wrote a little program in
REALbasic which I called Z-Write. It was
a word processor designed to help me keep
all the snippets of text associated with my
novels organized. Z-Write worked so well,
I decided to try selling it.

To my astonishment, Z-Write proved
popular: it brought in over $2,000 in the
first month of release!

That may not be much to an Adobe, but
for me it was a windfall, and it was the
first step toward REALbasic Developer
becoming a reality.

The next step was the launching of
REALbasic University, a weekly tutorial
series I wrote for the Applelinks website
starting in February 2001. I figured writing
those columns would be good practice and
would draw attention to REALbasic and
REALbasic Developer.

A Revolution is Launched
REALbasic hasn’t made me a millionaire,

but it has certainly changed my life. I’m not
a programmer by training, but with RB I
was able to accomplish a dream.

That’s why I chose “Revolution” as the
theme for this first issue. REALbasic is a
revolutionary product in the same sense
the original Macintosh was revolutionary.
The Mac brought computers to people who
weren’t (and didn’t want to be) computer
literate. REALbasic brings programming
to people who aren’t (and don’t want to
be) computer scientists.

It’s a match made in heaven.

Give Me Feedback
I hope you enjoy REALbasic Developer.

I wish this were a venture that could be
done for free, but producing a magazine
is expensive. Your support means a great
deal to everyone involved. It’s a statement
to us, to Apple, and to the world that Mac
programming is for everybody, not just
those with computer science degrees. Your
subscription will ensure that REALbasic
Developer is around for a long time.

I want this to be your magazine,
so let me know what you want to see!
Write to letters@rbdeveloper.com or
feedback@rbdeveloper.com.

I’d love to hear from you!

When RBD publisher Marc Zeedar
was a kid he used to create

magazines just for fun. Now he’s doing
it for a living! You may contact him at
<editor@rbdeveloper.com>.

Source Code
by Marc Zeedar

Welcome!
A dream becomes reality

RBD# 1000

6 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 7

REALBASICNEWS E V E N T S & R E L E A S E S REALBASICNEWS E V E N T S & R E L E A S E S

REALBASIC 4.5
PRE-RELEASES
REAL Software is working
on the next release of REAL-
basic. Version 4.5 adds sheet
support, the PagePanel Control
(which works like an invisible
TabPanel), virtual volumes,
parent and child controls for
better organization of controls,
lots of database additions and
fixes, sounds for tips, new
method and properties dialogs,
a new build settings dialog, a
new icon compositor dialog to
add your icons more easily, a
brand-new prefs window, an
“Open Recent” menu, listbox
enhancements, a splitable
code editor, a huge number
of changes to the Quicktime
support, a huge number of
changes to the 3D Classes,
vector graphic support, Pref-
erences menuitem (in the
Application menu) support on
Mac OS X, folderitem enhance-
ments, new icons for the code
editor and menus, and all those
little bug fixes and little new
features too. REAL Software is
trying to make this release the
most stable version ever, with
a long beta testing period. If
you want to test out prerelease
versions of REALbasic, join the
RB Developers List. Informa-
tion on this list is available at
http://www.realbasic.com/
support/internet.html.

SORT LIBRARY 1.8
SortLibrary is a free, open-
source REALbasic library
providing robust, optimized
implementations of several
standard sorting algorithms
for use by REALbasic devel-
opers. The major change in
version 1.8 is a substantial
rewrite of quicksort which
implements the three-way
partitioning method of Bentley
and McIlroy. This yields
substantial improvements in
performance in the presence
of equal keys. In addition,
quicksort is now implemented
using recursion. http://

www.quantum-meruit.com/
RB/SortLibrary.sit.hqx

BARCODE AUTOMATOR 1.0
Intelli Innovations, Inc. has
released Barcode Automator
1.0, a barcoding suite specifically
designed for bulk generation
and AppleScript automation.
Barcode Automator supports 9
different symbologies, includes
vectorized EPS and TIFF export
capabilities, and comes bundled
with a set of OCR fonts. Barcode
Automator is now available for
$329.95; a full-featured demo
version is also available.
http://www.intellisw.com/
barcodeautomator

DRAG PROMISE EXAMPLE
This example project creates
a DragItem from within a
canvas, and when dropped
into the Finder will create a
file at that location. http://
w w w . f r e a k s w . c o m /
rb-examples.html

RESPLODER
ResPloder explodes the
resources of a file into folders.
The resource types become
folders and the resources
become files that can be
edited with any hex editor.
Some resource types are auto-
matically saved in popular file
formats. The data fork of the
original file is also preserved.
ResPloder can also implode a
ResPloded folder back into a
file — drop a “ResPloded” folder
onto ResPloder and a new file
with exactly the same struc-
ture as the original file will be
created. If any of the resource
files in the ResPloded folder
have been modified, then the
changes will become part of

the new file. http://ljug.com/
sw/resploder.html

XCHAR 2.0
XChar 2.0 is a new version of
the OS X utility that allows you
to use uncommon characters
even if you don’t remember the
correct key combination. This
new version adds compatibility
for applications which do not
support Drag and Drop and also
allows to copy the font and style
along with the character. More-
over, lots of bugs were fixed and
interface was improved. http://
www.ziksw.com/software/
xchar.html

CARBON DECLARE LIBRARY
This is a handy collection
of enhancements available
through the Declare feature
of REALbasic. The library is
mainly for Carbon applications
but includes support for Classic
and maybe Windows too. http:
//kevin.sb.org/Files/CarbonD
eclareLibrary.sit

CUSTOM ICON PLUGIN V1.0
Custom Icon is a plugin which
adds new OS X icons — such
as the alert icon, the note icon,
the stop icon and other system
icons — to any REALbasic

project. http://www.mac-x-
software.com

DRAW CONTROL
PLUGIN V1.0
DrawControl is a plugin which
adds new OS X controls — such
as the small check box, the small
radio button, the ArrowButton,
and round BevelButton — and
other functionality such as icon
and arrow support. http://
www.mac-x-software.com

MOVIEWORKS PLUGIN V1.1
This new plugin from Alfred Van
Hoek enables more powerful
features to be used with the
QuickTime Movie Player.
http://homepage.mac.com/
vanhoek/#movieworks

DATABROWSER
PLUGIN V0.5.1A
This plugin implements the
DataBrowser control in Carbon
for Mac OS 9 and Mac OS X.
It is a more advanced listbox
than REALbasic’s own control
and provides more control and
more features to use. http://
www.webprofitable.com/RB

SETH WILLITS
CLASSES/PLUGINS
I updated my REALbasic section
and added a lot of my plugins,
classes, modules, and examples
I have neglected to put up for
a while. A total of 16 in all. I
also uploaded carbon version of
FSSinceWhen which I forgot to
do on the initial release. http://
www.freaksw.com/rb.html

DOCK MENU PLUGIN V1.0
Dock Menu Pro allows users
to create dynamic hierar-
chical Dock tile menus for
their REALbasic applica-
tions running under Mac OS
X 10.1 or higher. Dock Menu

6 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 7

REALBASICNEWS E V E N T S & R E L E A S E S REALBASICNEWS E V E N T S & R E L E A S E S

Pro implements virtually all
Menu Manager functions to
allow users to customize their
Dock menu anyway they feel
fit. It also allows users to add
custom data “tags” to each
menu item for added flexibility.
Dock Menu Pro plug-in costs
$10 and is royalty free. http://
www.everydaysoftware.net/
code/index.html

FSPLAYQTMOVIE — MIDI
FSPlayQTMovie can be used
to play a QT compatible
movie file without using a
MoviePlayer control. Because
it doesn’t have a movie control,
it is only useful for hearing the
sound track. This plugin will be
most useful for developers that
want to use MIDI files in their
applications. MIDI files are
required to be opened by REAL-
basic as a QuickTime movie
and played by a MoviePlayer.
http://homepage.mac.com/
freaksoftwarerb/

SPEECH RECOGNITION
PLUGIN V1.1.2
The Speech Recognition plug-
in allows simple support
for Speech Recognition and
Speech Synthesis. It also
allows users to install speech
help in the Speech Commands
window under Mac OS X. It
works on PPC and Carbon
with Speech Recognition 1.5
or higher. http://www.every
daysoftware.net/code/
index.html

URL ACCESS PLUGIN V2.0
Alfred Van Hoek’s URLAccess
plugin allows REALbasic appli-
cations to upload and download
Internet files using the system’s

URLAccess manager. The
new version of the plugin
allows setting and getting of
URLproperties and supports
HTTPURLMethods such as
“GET,” “SET,” “POST” and
others. You can post searches,
and above all it works flawlessly
with the Van Hoek’s HTMLren-
dering plugin. The versatility
of URLAccess Plugin leads to
numerous new possibilities,
including development of a
light-weight web browser appli-
cation that may compete with
other web browsers. URLAccess
plugin requires MacOS 8.5 or
higher. Users may purchase a
professional license for building
commercial products ($39), an
academic license for building
products you cannot sell
($12), or an amateur license
to get you going (free). http://
homepage.mac.com/vanhoek

REALDB TOOLS
REALdb Tools gives you the
ability to manipulate REAL
database files in ways that the
built-in database engine does
not provide at this time. With
REALdb Tools you can compact
a database to make it smaller
after records have been deleted,
drop any table or column from
a REAL database, change table
names, change column names
and data types, and add new
tables and columns. http://
www.realsoftware.com/
r e a l b a s i c / a b o u t /
REALdbTools.html

CARBON EVENTS
PLUGIN 2.5.2
This new version of the Carbon
Events Plugin provides a wealth
of functionality to Carbon appli-
cations: access to a toolbar
button, scroll wheel support,
live window resizing, access
to the application dock tile

menu, standard alert sheet,
alert dialog support, Ask Save
Changes, Discard Save Changes
sheet support, Put File dialog
sheet support, full service
menu support, access to usable
screen size (for respecting the
Dock), Quit event notifica-
tion, complete proxy icon
support with icon dragging
and window’s path menu, the
ability to get any folder by type
and domain, the ability to set
and get long file names, and
access to the current theme
identifier. Cost: $15. http://
www.everydaysoftware.net/
code/index.html

RBULK BUILDER 1.2.6
RBulk Builder is a Batch
Building companion for
REALbasic. With it, you can
automatically launch different
builds, changing the name, the
platform, the language and even
constant values for each one. It
is designed for people that need
to build many different binaries
(different platforms, localized,
demo/light versions...) from a
single source project file.
Version 1.2.6 provides compat-
ibility workarounds with
REALBasic versions 4.0 and
above when building carbon
applications. The program is
free and open-source. http://
www.liane.net/rb/rbulk

STRING STUFF PLUGIN 3.1.1
The String Stuff Plugin can
return a MemoryBlock pointing
a string, allowing a REALbasic
program to alter the string “in
place” by altering the memo-
ryblock. The plugin allows the
use of REALbasic text func-
tions, such as AscB and InStrB
with drastically improved
performance and provides
CharacterSet searching. String
Stuff contains “FastString,” a
class that can increase the speed
of string appends by tens or
hundreds of times compared
to REALBasic strings. The
plugin includes a huge range
of UTF32 handling methods,

including an ultra-fast MSR
(multi search replacement)
object, and FastReplaceAllB
method for doing replaceAllB
at speeds up to 267 times
faster than ReplaceAll. http://
www.elfdata.com/programmer/
downloadindex.html

ROUND BUTTON &
ROUNDED BEVELBUTTON
PLUGINS
These plug-ins allow users to
create real round navigation
buttons and rounded bevel
buttons under Mac OS X; the
buttons are compatible with OS
8.5 and higher. http://www.
everydaysoftware.net/code/
index.html

CALENDAR CLASS
Calendar Class is an easy-
to-insert calendar for your
projects. Simply drag the class
into your next project to add a
customizable calendar. Change
font, button color, background
color and more for a customized
look for every project. http://
www.colourfull.com/å

RBD# 1025

8 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

R E A L R E V I E W S T O O L S & P L U G I N S

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 9

R E A L R E V I E W S T O O L S & P L U G I N S

You use REALbasic because it is
the easiest Rapid Application

Development tool for the Macintosh.
However, it is limited when it comes
to OS X (Carbon) events, features,
and controls. That is where the
Carbon Events Plug-In comes in. It
takes over where REALbasic leaves
you stranded.

The Carbon Events Plug-In adds
several key features for Carbon builds:
Scroll Wheel support, Quit events,
Sheets support, useable screen space,
Proxy Icons, and a lot more!

The Quit event is essential for OS X
builds. It enables you to use the Quit
menu item that is found under the
Application menu. REALbasic quits
when this menu is selected, but you can’t
add any code to the event. (i.e. when
a user quits your word processor you
would usually want to make sure that
any open files have been saved. With
REALbasic 4.0.2 and lower, this was not
an option. The application would quit
without warning when Quit was selected
from the Application menu.)

A Sheet is an OS X dialog box that
is attached to a window. They can be
translucent or opaque and make it
easier for the user to distinguish what
window the dialog box is related too.
Although it is possible to create a sheet
in REALbasic, without this plugin you
cannot use sheets to display Save/Open
dialogs.

The following may sound like trivial
features; however, they are very useful.
The first is the inclusion of Proxy Icons.
Proxy Icons are displayed in the title
bar of a window and have become
widely used in OS X. Their inclusion
in this plugin allows programmers to
make their applications follow OS X
appearance conventions. The plugin
also allows users to keep track of the
usable space on their screen. Under Mac
OS X, the user’s desktop will usually
have a Dock on it, in any of a number
of positions. Users will expect that your
application recognize the position of
their Dock. While nearly impossible
in REALbasic, Carbon Events Plug-

in makes that as easy as adding two
lines of code!

Although this plug-in has a lot of
great features, it still has some minor
drawbacks. For instance, it does support
Live Window Resizing, but if you do
this, no controls can be locked to any
of the windows sides (which limits the
usefulness of Live Window Resizing).
Also, Translucent sheets will not work if
anything else in the window is redrawn.
These problems are REALbasic-related
and are not controllable by the creator
of this plugin.

Besides these few minor drawbacks,
the Carbon Events Plug-in is a must
have for all OS X developers. Hopefully
REALbasic will add these features in
future releases, but until then this
plugin will do the trick.

Carbon Events Plugin 2.5 IN BRIEF
Product
Carbon Events
Plugin 2.5

Manufacturer
Everyday Software

Price
$15

System Requirements
Mac OS X 10.1+,
REALbasic 3.x

Contact Info
everyday@mac.com
homepage.mac.com/
everyday

Pros
Inexpensive; Easy to
use; Gives essential
OS X controls

Cons
Live Window Resizing
is limited; scrollwheel
support doesn’t work
all the time

Rating (1.0 - 5.0): 4.5

Daniel Howard

At one point in time or another,
almost all REALbasic developers

will want to integrate a clickable URL
inside of their application. And thanks
to REALcode’s CURLLinkButton
control, anybody can do this!

CURLLinkButton is simple to use:
you need to drag the class into your
project window first, then you create
a canvas control, set its “super” class
to CURLLinkButton, type a few lines
of code (documented in the Read Me),
and run the program. Not only does
it resize itself to the exact size of your
link, it also handles drawing and going
to the URL that you indicated.

Several methods let you customize
the appearance of your new link. You
can set a special cursor when the mouse
is hovering over the link, change the
font and size of the text, and more.
You can even change the text that’s
displayed to something other than the
URL, and it still works perfectly.

You can use any URL with
CURLLinkButton, including http,
ftp, telnet, or any other URL type that’s
properly configured in your Internet
settings. No declares are used at all,
meaning it can work on any REALbasic-
supported platform (68K, PPC, Carbon,
Win32), and it comes as a REALbasic v1
format project, meaning any REALbasic

user can use CURLLinkButton. In other
words, anyone with a Quadra and
REALbasic v1.1 up to an OS X machine
with REALbasic v4.0.2 can use it. The
price, you ask? Entirely free.

However, the total control freak
might not like CURLLinkButton. The
text is highlighted when you click on
the link, rather than the text simply
changing colors, as you are probably
used to in a web browser. There’s
no way to alter the text color either,
without editing the class yourself. Bold
and italic support would have been nice,
although would probably not have been
used much anyway. But as I mentioned,
the class is open source, and you can

revise and edit it as you please.
There’s no revolutionary code

here. Just a simple class that does
a simple job: create a clickable link in
your REALbasic application. Anyone
can use it, and it does the job well.

CURLLinkButton IN BRIEF
Product
CURLLinkButton

Manufacturer
Catalunya Disseny
Informàtic

Price
Free

Contact Info
Pablo Iglesias
63 Local 4
08302 Mataró
(Barcelona), Spain
catdis@catdis.com
catdis.com/realcode/
realcode.htm

Pros
Easy to use; supports
every version
of REALbasic;
customizable; free

Cons
No longer supported;
slightly strange
appearance

Rating (1.0 - 5.0): 3.6

Mike Richards

RBD# 1024

RBD# 1023

8 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

R E A L R E V I E W S T O O L S & P L U G I N S

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 9

R E A L R E V I E W S T O O L S & P L U G I N S

Chances are if you need to do some
math calculations with REALbasic,

doubles can hold numbers as large or
small as you’ll require. However, if
you need to get very precise answers,
in some cases a double might not be
sufficient. Typically, numbers repre-
sented by doubles are accurate for about
the first sixteen digits. Anything to the
right of the sixteenth digit is most likely
inaccurate. This means that if you’re
using a double to store a number that’s
in excess of one quadrillion, you can
expect any values after the decimal
point to be incorrect.

Fortunately, you won’t need to
forsake modern technology and resort
to using paper and a pencil when you’re
dealing with highly precise numbers.
Instead, you can use MPCalc, a freeware
REALbasic plugin that can perform
calculations on numbers with up to
thirty thousand digits. You can even
set the precision yourself, so if you just
need twenty digits, your program won’t
be chugging along calculating 29,980
unnecessary digits.

The MPCalc plugin operates using
what is known as the Reverse Polish
Notation (RPN). This is somewhat
different from what you’re probably
used to, but it’s a small adjustment.
In an expression written in RPN,
both numbers are written before the
operator. For example, instead of
writing 1 + 2, you would write 1 2 + in
RPN. It’s a different way of thinking,
but with a little practice, even expres-
sions with several operations are easy
to state in RPN.

Unfortunately, instructing MPCalc
to execute various calculations isn’t as
simple as performing arithmetic on inte-
gers or doubles in REALbasic. Instead,
you’ll need to enter a few commands to
tell the plugin to do anything. Adding
two numbers requires five commands:
two to enter the first number, one to
enter the second number, another to
tell MPCalc to add the numbers, and a
fifth to read the result. Even though it
takes five lines of code to perform such
a simple calculation, it’s still very easy
to issue commands. This is in part due

to the simple method names that are
easy to remember.

MPCalc gives programmers access to
a wide array of mathematical functions.
It supports basic arithmetic operations,
as well as exponential, trigonometric,
hyperbolic, and logarithmic functions.
It also supports several more obscure
functions, including the Beta and
Gamma functions, Bessel functions,
and Fresnal Integrals.

Additionally, MPCalc has four
storage registers for remembering
the results of previous calculations. The
registers prove quite valuable since the
only other way to store multiple-preci-
sion values is by using strings.

Overall, MPCalc is a solid plugin that
is fairly well documented. Because of
its flexible precision and wide variety of
scientific functions, the MPCalc plugin
is a worthy addition to your REALbasic
toolbox if you do any serious math
calculations.

MPCalc PluginIN BRIEF
Product
MPCalc Plugin

Manufacturer
Dr. Robert Delaney

Price
Free

Contact Info
delaneyrm@mac.com

Pros
Very high precision;
Free

Cons
Adds about 700k to
filesize; uses RPN
math

Rating (1.0 - 5.0): 3.8

Jim Rodovich

If you think the tools that the
REALbasic environment gives

you to work with digital media are
too few, think again. Stimulus 2.0,
Electric Butterfly’s image viewer and
audio/video player, is out.

Stimulus is an all-in-one digital
media viewer. If you are tired of
switching through tons of applications
to view your media files (Photoshop for
your pictures, iTunes for your MP3’s
and iPod, QuickTime Player for your
videos), Stimulus is for you. This version
of Stimulus has many new features,
including the ability to play back from
your iPod. (Didn’t know you could do
that with REALbasic, did you?)

Stimulus supports over fifteen file
formats, from Audio CD to WAVE,
and still more formats are planned
for inclusion in the 3.0 release of the
software.

Stimulus has a built-in help system,
which is more or less a simple emula-
tion of the Language Reference built
into REALbasic. The help demonstrates
a good way to use HTML rendering

in your application. This application
also takes advantage of the famous CD
Control by Toby Rush, which powers
its Audio CD playback.

If it were not for custom classes and
the sub-classing made available in the
REALbasic IDE, REALbasic would
probably not have survived. Sub-
classing is one of the more powerful
features in REALbasic, and, clearly,
Stimulus 2.0 shows that. From its
amazing color bevel buttons that also
have 32x32 icons to the WindowSplitter
control, Stimulus 2.0 would not have
been released or have been successful
without the help of sub-classing and
third party class developers.

Electric Butterfly has found an
interesting and very clever use for a
timer control in Stimulus 2.0. This new
version of Stimulus has a slide show
feature. This feature activates a timer
that, every few seconds, scans through
the built-in file browser for media files
that it can open. It then displays the
files that it finds one at a time for a
slide-show effect.

This new release of Stimulus has
amazing new error handling techniques,
thanks to REALbasic version 4. The new
release of REALbasic includes a new
event called “Unhandled Exception.”
This allows programmers to not have to
add “exception” lines to each object in
their program to prevent from crashes.
Instead, the programmer can add in just
a few lines of code to the Unhandled
Exception event and if there is a crash, it
triggers the code in that event. Because
of this, Stimulus can also have very light
memory requirements to compliment
its small file size.

If the user happens to like this
shareware program, as long as they
have their credit card handy, they can
order it without getting out of their
chair. Stimulus makes perfect use of
the eSellerate plugin for REALbasic
for convenient online ordering.

Stimulus 2.0 shows off the power
of REALbasic in many impressive
areas.

Profile: Stimulus 2.0IN BRIEF
Product
Stimulus 2.0

Manufacturer
Electric Butterfly

Price
$12

System Requirements
Mac OS 8.6+, Mac OS
X 10.1+, Quicktime 4+
(Classic), Quicktime
5+ (OS X), 6 MB RAM

Contact Info
support@ebutterfly.com
www.ebutterfly.com/
stimulus

Greg Fiumara

RBD# 1021

RBD# 1022

10 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

R E A L R E V I E W S T O O L S & P L U G I N S

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 11

When it comes to help systems,
the task of recreating the help

information in the several different
platform-specific formats can occupy
important resources in the finishing
out process before application release.
UniHelp from Electric Butterfly makes
these problems a thing of the past with
its universal, multi-platform help
interface. Configuring the impressive
array of customizable attributes for the
UniHelp interface is quick and creating
the content is as simple as working in
your favorite text editor.

UniHelp, when included in a user’s
application, manages a self-contained
help window with a simple interface. On
the left side of the window is a ListBox
that can be hierarchical if needed. Each
element in the ListBox corresponds to
a different text clipping which will be
displayed in the scrollable EditField
on the right side of the window. The
help items can be browsed in this list,
or the user can search for key words.
Easy navigation butttons are accom-

panied by a print button at the top of
the window.

Including UniHelp in a project
is simple. In the Project window,
the user must import the UniHelp
module and the UniHelpGraphics
folder. A short clipping of code which
has been supplied in the UniHelp
documentation should be inserted at
the Help menu event handler which
will create the window. A segment of
this code can be adjusted so that certain
properties of the UniHelp object can be
set to customize the UniHelp interface.
All of the text clippings displayed in
the help window are written to disk
in a directory entitled “Help.” The
user creates plain text or HTML files
and names them according to an
easy-to-learn naming convention
that determines their display in the
UniHelp window.

The customizations available are
simple, but they are effective in
incorporating UniHelp into the overall
look-and-feel of your application. Most

of the options revolve around the display
colors of the graphical elements such
as buttons and list icons. It also allows
the user to set the default language of
the user interface elements to one of
the following: English, French, Italian,
Spanish, German, or Portuguese.

UniHelp provides a simple, multi-
platform solution. However, UniHelp
costs $49. At this price, it is likely to
be worthwhile for more serious devel-
opers, but hobbyists may not be able to
justify the expense. It does make things
incredibly simple, but other than its
powerful search features, it does not
provide much functionality that could
not be replicated by developers with
the necessary time on their hands.

UniHelp 1.1 IN BRIEF
Product
UniHelp 1.1

Manufacturer
Electric Butterfly

Price
$49

System Requirements
REALbasic 3.5.2 or
4.0.2, Mac OS 8.6+,
Mac OS X 10.1+,
Windows 98+,
Quicktime (for image
and multimedia
features only)

Contact Info
support@ebutterfly.com
www.ebutterfly.com

Pros
Slick; powerful; takes
care of tedious work

Cons
May be too expensive
for anyone not using it
to its full potential

Rating (1.0 - 5.0): 3.8

Brian Jones

There are many applications in which
a lot of information needs to fit in

a small window. A perfect solution for
this problem is the use of a bar that can
be dragged to resize different areas of
the window. Users can expand areas as
they need them and then shrink them
in order to conserve window real
estate. It is precisely this solution that
Einhugur Software’s WindowSplitter
plug-in makes exceptionally easy to
implement.

WindowSplitter 4.0 can achieve
basic functionality using just one
method. Imagine creating a window
with a ListBox control on the left and
an EditField control on the right with
a WindowSplitter control in the middle
(similar to UniHelp’s window above).
In the WindowSplitter control’s Open
event simply type these lines:

me.addControl(myListBox, true)

me.addControl(myEditField, false)

That’s it. Now, when the application
is run, dragging the bar will resize the

ListBox and EditField controls. This
simplicity is a result of a great design
decision made by Einhugur in a recent
version of WindowSplitter. It used to
be that a developer had to respond to
an event and resize the appropriate
controls himself; however, now
WindowSplitter maintains a list of
controls that it will resize as needed.
Controls are added to this list using
the AddControl method. The boolean
value passed as the second parameter
of the AddControl method refers to the
relative position of the control to the
WindowSplitter. Controls given values
of true are understood to be on top of a
horizontal bar or to the left of a vertical
control, while those given a false value
are understood to be below a horizontal
bar or to the right of a vertical one. The
old resize event has also been retained
for developers using custom-defined
controls and for the purposes of back-
wards compatibility.

Several properties allow developers
to set things such as minimum sizes for
the areas on either side of the separator

and the position of the separator for the
purposes of saving interface settings to
a preferences file. Also, some special
events allow the developer to control the
drawing of the separator and to define
the clickable region of the separator.

WindowSplitter 4.0 provides a well-
polished solution to easily including
an important interface element preva-
lent in many commercial applications.
One deficiency is the lack of a catch-all
documentation file. The included docu-
mentation accessed with Einhugur’s
Plunger software is useful, but should
be supplemented with traditional
documentation. The program is paid
for (as are other Einhugur products)
through their subscription service. For
$49 US, users have access to all of their
REALbasic add-ons including a year of
upgrades. Those developing applica-
tions for which this kind of interface
solution would be appropriate would
do well to let Einhugur handle it for
them.

WindowSplitter 4.0 IN BRIEF
Product
WindowSplitter 4.0

Manufacturer
Einhugur Software

Price
$49, for Einhugur
subscription

System Requirements
REALbasic 2.1+

Contact Info
support@einhugur.com
www.einhugur.com

Pros
Simplicity; surprising
flexibility

Cons
Expensive unless
you’re interested
in other Einhugur
products; some
drawing quirks

Rating (1.0 - 5.0): 3.8

Brian Jones

RBD# 1020

RBD# 1019

10 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

R E A L R E V I E W S T O O L S & P L U G I N S

Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 11

Writer was my first REALbasic baby.
It started off in the REALbasic 2

days, and I learned to program writing
it. It slowly evolved until it got to version
4.5, when I decided to change the name
from “KennettText” to “Writer,” relabel
it version 1.0, and throw it out to the big
bad world.

Back then it was really poor. There were
no exception handlers at all, and if you
tried to open the wrong kind of file it would
throw an exception and quit. Despite this,
Writer did quite well. Now, I realise this
was because the “Made with REALbasic
= piece of crap” era hadn’t yet started.
As Writer slowly developed, I began to
see more and more REALbasic programs
on VersionTracker, and I tried many of
them to see what others had done. I wasn’t
impressed with many; they either looked
horrible or looked beautiful but weren’t
programmed well, and threw exceptions
everywhere. At first, the “Made with
REALbasic” bashers were other program-
mers who worked with complicated
languages such as C, and weren’t too happy
at seeing how quickly and easily you could
make programs in REALbasic. They looked
through the programs and blamed every
single bug they found on this wonderful
development environment. To this day,
I see silly mistakes I make blamed on
REALbasic by everyone.

By this time, Writer looked fairly
decent, was virtually exception-proof,
and had started to mature into a fairly
useful piece of software. I learned from
other people’s mistakes and made Writer

the most stable, good-looking program I
could. Now, at version 2.6, it is a successful
and popular program that I am proud to
show off to everyone I can, especially at
work. “Hey, my program can do that much
more elegantly!” In the next few pages, I
will share my learning experience with you,
going through the most important aspects
of creating a successful program and what
happens when you screw up.

Interface
The first thing people judge your program

by is its interface. Even if your program is
stable, fast, and the most useful thing on
the planet, not many people will use it if it
looks ugly. You really have no excuse not
to do this, as REALbasic makes it simple

to make a nice interface. Controls are
snapped to their proper places when you
drag them to your project’s windows, and
all you have to do it to set the right font,
text size, and size of the control to fit its
caption or contents.

After you have made your interface
look right, the next things to consider are
icons. Nicely done icons that are used for
your application’s main, document, and
(if appropriate) toolbar icons add the
extra sparkle and polish that is needed to
make your product shine. However, badly
done icons are worse than no icons at all!
If you really want icons, but don’t have a
drop of artistic talent (like me), you may
want to consider getting a specialist to do
it for you. This isn’t cheap, and should

Postmor tem
by Daniel Kennett

Writer:
Behind the application

Daniel Kennett has written several
small programs with REALbasic,

and successfully released a few of them
to the public. Figure 1: Writer About Box

12 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 13

only be considered if you are making a
big product and expect to get a consider-
able income from it, or if you are dirty
stinkin’ rich. My experience with such
companies isn’t very good, as after much
thought and consideration I invested in
spiffy icons from Acorn Creative, only to
find that they were unable to complete
my project due to “funding issues,” and
I lost my icons and my money. However,
don’t let that put you down. Take a look
at http://www.iconfactory.com/. They are
one of the industry’s best, but are pricey. If
you do consider them, bear in mind they
designed the icons for the popular MP3
player Audion, and the (not-so-popular
among Mac users) operating system
Windows XP. Much as I dislike Windows,
I love its icons. If I had the money, I’d go
for IconFactory in a flash.

One more thing to consider is a logo
for your program. Again, you could get a
specialist to do this, but doing it yourself is
much more fun. Play around with the tools
in Photoshop (if you have it), or another
graphics program. Often, your program’s
name with a few effects on it (make sure it’s
tasteful) will be fine. If you want something
fancier, the best thing to do is sit down
with a pencil and paper and draw. Once
you have something good, scan it in and
touch it up in your graphics program. The
third option is to look around while you
are with friends or colleagues, especially
if one of them is artistic. Writer’s logo is
based on a piece of art my friend Emily
drew, which I spotted when she brushed
past me on her way home — it was really
that quick! Most friends will let you use
their work if you give them credit, and if

they’re particularly evil, a small cash sum
or a present. (See Figure 1.)

Writer’s initial interface was absolutely
terrible. Badly spaced canvases with
icons stolen straight from the system or
REALbasic lined the top of the window,
which when clicked on could not be
cancelled — releasing the mouse button
outside the canvas still performed its opera-
tion. Now, in the Mac OS X version, the
toolbars mimic the beautiful toolbars that
are used in Cocoa applications such as Mail
and OmniWeb. They aren’t customizable
yet, but that’s something I’m working on.
(See Figure 2.)

It is important to tailor the interface for
the system on which it runs. Mac OS X
applications use slightly bigger fonts and
controls than their Mac OS 9 counterparts,
so they need a little more room to breathe.
Icons are also expected to be bigger, and
these large icons look out of place on Mac
OS 9, especially if they have been designed
to fit in with Mac OS X’s Aqua look and feel.
In the case of Writer, the interfaces are
so different I have split the program into
two separate source files, one for “Classic”
and one for Mac OS X. It is more work to
update, but the effort is worth it as I have
a program that looks great in both Mac OS
9 and Mac OS X.

Coding
The code that makes Writer work is

terrible. Awful. I’m ashamed of it. It is
difficult to update, adapt, and to under-
stand, especially after I haven’t looked at
it for a while.

When I started Writer, it was to learn how
to program. I thought I’d chuck it in the

bin after a few months and start something
new. Due to this, I didn’t comment my code
or make it future-friendly. There was only
one way to save a document, which was
from the menu bar, so I put the save code
into the FileSave menu handler which was
fine at the time. Now, there are four ways
to save a document — from the menu bar,
the toolbar, the “Save Changes?” dialog,
and via AppleEvents. Each of those four
has its own save code, so when I update
the save code in one I have to change it
in all four. Now, even when creating the
tiniest of programs, I make the effort to
comment my code and to use the wonderful
invention of global methods. Using these,
you can have your save code in one place
only, and have your menus and toolbars
(or anything else) call it. My save methods
usually take the parameters:

File as folderitem, askforlocation as Boolean,
data as variant

Then, I can simply call “SaveFile
(document, false, editfield1.text)”
and the code in that method saves my
file, and it works from wherever I call
it. This is invaluable for all applications,
and absolutely necessary for larger ones.
Commenting code is important, too. It takes
a bit of extra time and you may think, “I
know what my code does, I don’t need to
comment it!” but it is a godsend for when
things go wrong, especially in lengthy or
complex pieces of code. Commenting makes
it a breeze to tell exactly what your code is
doing, where, and when.

Another important thing to do, especially
when performing lengthy operations, is
to give user feedback. For example, the

Figure 2: Writer toolbars for Mac OS 9 and Mac OS X

12 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 13

Internet Dictionary in Writer used to do
its stuff in a loop, with no user feedback.
If the operation took a long time, the user
would think that my program had crashed
and would force quit it, complaining bitterly
as much as they could. Now, it works in a
thread so the user can do other things while
the word is being looked up, and provides
feedback in the form of a progress bar, a
chasingarrows control, and a small static-
text that informs the user what is going on.
The operation now takes about three times
longer, but the user knows what is going on.
I’m sure 95% of your users will prefer that
something take longer but know what is
going on, rather than it happening quicker
with no feedback. This applies especially to
novice computer users, who rely on their
computer telling them what it is doing.

The last and maybe most important thing
to consider is exceptions. Things can go
wrong quite easily when programming,
and if you miss a potential problem that
a user runs into he or she will be presented
with a rude box informing them that your
program has performed an illegal excep-
tion and must shut down. If there was
any unsaved work, it will be lost and you
will have an angry user. More often than
not, exceptions can be caught, fixed, and
your program can merrily carry on as if
nothing had happened. For example, if your
program is instructed to open a corrupt
file, a nilObject exception may be thrown,
which would cause the program to quit.
However, after adding these lines to the
very bottom of your file opening code, the
user will understand what has happened
and will be able to try again.

Exception nilobjectexception

 Msgbox “An unexpected error has occurred. The
file you selected may be corrupted.
Please try again.”

Other possible uses for the exception
handler are writing to a log file that an error
occurred, or giving the user information
about where to report what happened so
you can have a go at fixing it. Users that get
listened to are very happy users indeed!

Selling/Distributing
You have your beautiful, fast, excep-

tion-proof application sitting on your
hard drive waiting to be used and abused
by your adoring public. Now what? The
first thing to do is decide what to charge
for it, if anything. If it is a simple app
that you have enjoyed making and think
others will like, I advise distributing it as
freeware. People will love you for it, and
you’ll get a warm fuzzy feeling for helping
out the Mac community. However, if you

do choose to keep it free, never, ever do
what I did and decide to start charging
for it. People will get used to having it for
free, and will complain bitterly when you
start to charge. I managed to get away with

it, but only by the skin of my teeth. The
things that saved my hide were charging a
ridiculously small amount for it ($5), and
not disabling or restricting the program
in any way for unregistered users. The
best way to go if you want money for a
free program is to politely ask for a small
donation toward the development of your
program, and to let your users decide what
they want to pay.

If you want to distribute your master-
piece as shareware, I recommend using
the service provided by eSellerate (http:
//www.esellerate.net/). They don’t charge
much for their service (10% of each sale to
begin with) and provide a web store and
an amazing REALbasic plugin that allows
people to register from within your program
without having to touch a web browser.
It can then automatically register your
software once payment has been cleared,
and a typical transaction takes less than
five minutes. To see it in action, download
my program Writer and take a look (you
don’t have to purchase it too see what it
does).

Once you have your payment options set
up, go ahead and upload your program to
your website. If you don’t have one, you
can use a free service such as Apple’s
iDisk to put your creation online. Once
it’s up, tell everyone. Write a press
release and e-mail it to all the big news
sites, create an entry at versiontracker.com

(http://www.versiontracker.com/), tell all
your Mac-owning friends, and put a big
sign on top of your house telling everyone
about it. Do whatever it takes to get word
out! Once people know about your program
and start using it, you have something else
to do: customer support.

Handling your Users
Your users can be very helpful and

polite, rude and abusive, and others can
be complete novices who need their hands
held to do even trivial things. It is important
that you remain calm, helpful, and polite
at all times. When you reply politely, help
users as much as possible, and generally
be a nice guy, people will treat you with
respect. Listening to people who use your
program often is vital to making a successful
product. If you fix a bug or add a feature
that someone has requested, you’ll often
get a very nice thank you from that person,
and possibly a donation or registration for
your program. That person will then tell
people what a nice guy you are, and more
people will use your program.

Feel free to ignore abusive people, as
replying to a message that states “Your
program sux! Make it better!” is usually a
waste of time. However, computer novices
should get help and attention, as they will
appreciate it and you will get the same posi-
tive image as you would when listening
to bug reports and feature requests. Even
if you don’t have time to write a lengthy
tutorial there and then, reply to the person
and tell them that you don’t have time, but
will contact them in a few days with better
instructions. Oh, and don’t forget to do so,
as broken promises are bad. Customer rela-
tions are what people judge you and your
company by, so don’t let it slip. It can be a
chore, but it is an important one.

Overview
There we have it. How Writer rose

from a pathetic little project to a popular
and profitable program. If you follow
the advice here, you should be able to
produce a program that avoids the “Made
with REALbasic = crap” myth, and keep
people happy once you’ve got your program
going. Oh, I have one more piece of advice,
which is to take your time! Writer is well
made, but only because I’ve had years
to work on it. Its bigger brother, Writer
PRO, is more powerful, but has been a
flop due to the fact that I rushed it and it
isn’t well built at all. Take a look at http://
www.kennettnet.co.uk/software/ and see
how to make a good program, and how
not to.

Write a press release and
e-mail it to all the big news

sites, create an entry at
Version Tracker, tell all your

Mac-owning friends, and
put a big sign on top of your
house telling everyone about
your program. Do whatever

it takes to get word out!

RBD# 1001

14 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 15

Tell us a little of your background.
How did you get into programming?
Were you always a Mac fan or did
that come later?

I started programming approximately
23 years ago at the age of nine on my
father’s TRS-80. It originally came with
4k of memory.

My parents purchased me an Amiga when
I was 17 — I finally had a real computer with
a C compiler — and I taught myself C by
looking at sample programs. I wrote my
first true compiler that year.

But the Amiga slowly stagnated — and I
started learning to program the Mac on a
friend’s machine. I wrote my first program
on my friend’s IIci — a mandelbrot gener-
ator — I didn’t know anything about the
Toolbox, but in true Amiga fashion I figured
out where the screen buffer was located,
and just drew the calculated mandelbrot
values directly to the screen. Wheeee!

Once I’d finally managed to afford my
own Mac (the just released IIsi), I started
writing my first larger scale Mac applica-
tion with my friends — we released the well
received Mac shareware game “Prince of
Destruction.” This was followed up with a
Windows version, since I was also becoming
a capable Windows programmer.

But on the whole, I’ve always enjoyed
developing for the Mac far better than
developing for Windows — there’s always
been far fewer cases of pulling my hair out
and screaming obscenities when writing
Mac programs. The crashing and instability
was the only real downside, but that’s why
I love Mac OS X.

REALbasic was originally called
CrossBasic. What inspired you to
create it? What were your goals?

Like many young programmers writing
stuff in their spare time, I was an accom-

plished dilettante. Numerous projects were
started, the clever coding completed, and
then the project would be dropped since
it was just too uninteresting to bother to
complete it. I always enjoyed doing things
that pushed the limits. For example, in the
post-Doom era I was experimenting with
writing texturing engines (of course every-
body else was doing the same). I came up
with a clever technique that did full screen
texturing 640x480 at 30 fps, which was
around 3x faster than anybody else was
managing on a 6100/60. It never got
developed past the proof of concept.

One day I realized that I was just wasting
my time. What was the point of writing the
software if it was never completed? I then
resolved to carefully pick my next project
and to follow through, no matter how much
tedious code had to be written.

As mentioned before, I’ve always had a
soft spot for development environments,
and previously I’ve always had some form
of compiler project, or ideal, that I’d been
experimenting with. They made perfect
sense to me, but it would be a steep learning
curve for anybody else to pick up.

Then one day it struck me — people didn’t
want clever innovative development envi-
ronments — they wanted something that
was approachable and that they could get
working with as soon as possible. Visual
Basic for the Windows platform was a
very handy tool with no real equivalent
tool available on the Macintosh platform
— and I believed there was an entire market
segment that wasn’t being served by the
available environments.

So that evening at my favorite Chinese
restaurant I resolved to create a develop-
ment tool for the Macintosh that was
similar to Visual Basic — to empower a
whole new generation of programmers. Of

course, I wanted to make some improve-
ments while I was at it....

Were you wanting CrossBasic to
be able to run Visual Basic code
or was that even a consideration?
Why are there syntax differences
between the languages? Were you
ever worried about Microsoft being
upset at you for making a similar
product?

Full source compatibility wasn’t much
of a consideration. I wanted to maintain
some degree of similarity to the BASIC
standard, which Visual Basic was by default
— but I wasn’t looking for a pushbutton
recompilation.

This is one of the things that I’m not sure
I made the right decision about — though
if I’d aimed for 100% VB compatibility
this would have brought its own range of
problems. If something is meant to be 100%
VB compatible, and somebody buys it on
that basis, they are going to be upset about
anything that gives them trouble.

Contrast this with a product that only
aims to be somewhat similar — since it’s not
being marketed/conceptualized as 100%
VB compatible, then people realize they’re
going to have to do some work.

Perhaps it could have been intentionally
more compatible.

I did have some worries that Microsoft
would chase me with a litigation stick, but
even though I am not a lawyer the legal
precedents didn’t seem to indicate that I
would have a problem. On the other hand,
all Microsoft had to do was keep me in court
and bankrupt me that way. I was still single
back then, and so I wasn’t really risking
that much by going forward.

In te rv iew
by Marc Zeedar

Andrew Barry:
The inventor of REALbasic speaks with RBD

14 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 15

What was more significant about
CrossBasic: that it was a Mac
version of Visual Basic or that it
could cross-compile?

The most important thing about
CrossBasic was targeting Mac applications.
The original feature of cross-compiling to
Java was a ‘cool’ side-project. Two things
led to the Java cross-compilation being
dropped. One, Java really sucked. Two,
continuing to support the Java cross-
compilation was limiting the development
of CrossBasic. Oh, and the fact that only
one percent of my user base was interested
in cross-compiling to Java, and even those
people were just dabbling.

In fact, a company approached me to buy
the product in the early days — but it was
made clear from the outset that all they
were interested in was the BASIC cross-
compiling to Java technology and the Mac
targeting would be dropped. This might
sound stupid, but I felt strongly about
providing Mac programmers with a devel-
opment tool and so I didn’t bother to find
out how much money they were offering.

What led to CrossBasic becoming
REALbasic?

Geoff Perlman approched me because he
liked the product. I knew my limitations
(documentation was scant, and I had no
time for marketing, etc.). There were a
couple of other interested parties. They
seemed more interested in taking over
complete control, and I was not comfort-
able with that. I felt that originally Geoff
and I shared a similar vision. I then turned
over the intellectual property and RB was
created out of CB.

You left REAL Software in 1999
right as REALbasic was gaining
popularity. Any regrets in leaving?

Leaving REAL was difficult because RB
was my “baby.” Suffice to say I consider
myself an artist in many ways. That left
me open to creative differences with the
new parent. I suppose I regret giving up
my “baby,” but in the end it has been a real
learning experience and one that I have
taken valuable lessons from — I won’t make
those mistakes again. So I have no regrets
in that respect. I do, however, miss the RB
community and having relationships with
the end users. There was something glori-
ously fun about being able to fix end user
problems and giving them a fix in a short
amount of time rather than the extended
process that most bugs go through with
most applications.

 What are you doing now?
Putting up with my wife’s remodeling

of our house, getting used to living in
Australia again, and changing diapers
on real babies!!! I have three daughters,
who are beautiful, fun, and challenging.
Unlike applications there is no way to
“fix” them! ;-)

I also own my own company in Australia
and we do a lot of custom apps and plugins.
You are welcome to check out our company’s
website http://www.barrysoftware.com for
current news on our projects, or send an
email to say “Hi.”

What do you think of the current
version of REALbasic? What are the
weakest and strongest points of the
product?

I think RB is maturing nicely — though
Imust admit that I only use a small core
of the product’s features. I’m really happy
about the progress of the Mac OS X port.
That is the future of the Macintosh and it’s
good to see RB take a strong role.

The strongest point of the product
has always been the ability to whip up a
quick utility program that has a first class
interface. RB has a lot of nice touches to
help the user make sure that their user
interface elements are properly aligned,
something which can be really fiddly under
Visual Basic.

As far as weak points are concerned, this
really just applies to the sort of work you’re
doing. For my purposes, it really doesn’t
have any weak points. To different people
with different requirements, there might be
areas that could use further development
— but REALbasic has to cover such a broad
range of features they can’t always make all
of the people happy all of the time.

REALbasic’s ease-of-use has
spawned tons of new software on
the market. Are there any particular
RB programs that stand out as being
most impressive?

Alas, I must admit to being insular. I don’t
use much software outside CodeWarrior,
REALbasic, Mail, and iTunes (got to have
my tunes while I work). But when I do my
morning web surf, seeing software that’s
been written with RB brings a smile.

What aspect of REALbasic
gives you the biggest sense of
accomplishment?

Knowing that in some small way I
accomplished what I had set out to do
— make the lives of people easier in some
way. REALbasic accomplished that in more
than one way (ease of use, cross compiling,

etc.). CrossBasic and then REALbasic were
created out of the altruistic need to help
people (sounds corny, but true). I wasn’t
in it for the money. I am proud of the fact
that what I did has helped people; not
changed the world, but in some small way
has made a difference. That’s all I really
wanted. I hope to make that difference
again in the future.

Did you ever imagine REALbasic
would be as popular as it is today?

I don’t think I really envisaged it — it’s
one thing to imagine and develop the soft-
ware. It’s another thing to go into a local
bookstore and see REALbasic program-
ming books.

What do you think of Mac OS X?
I love it. Once I installed it I’ve never

looked back. It strongly reminds me the
first time I installed Windows NT after
having used Windows 3.11 — everything
just becomes “smoother.” I’d played around
with Linux in the past, but Mac OS X just
felt like home.

How would you compare the Cocoa
programming tools (Interface
Builder, etc.) to REALbasic?

There is a whole mystique about Interface
Builder that dates back to the NeXT days,
when it was substantially better than the
other types of tools available — but it really
hasn’t advanced much, and I believe that
the REALbasic user has a far superior
experience.

Apart from the tight integration between
the UI editor and the code editor, and a
cleaner interface, REALbasic also boasts
better support for visually binding objects.
It’s a pity that nobody uses this feature,
since it can take a lot of the irritation out
of generating internally consistent UIs. (If
you don’t know what I’m talking about, try
shift-command dragging between a push
button and a listbox).

Is there an exciting new product
you’re working on you’d like to
tell us about? Programming via
telepathy, perhaps?

For the most part my Australian company
has kept me busy with a lot of contracting
work (kids are expensive), but I’ve recently
found enough spare time to develop Bug
Spray — a killer debugging app! It will be
ready for a standard release soon.

Development environments are my
forte and my love. I would like to move
back to that end of things when I am able
to because I feel that is where my greatest
contribution lies.

RBD# 1002

16 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 17

As a child, my favorite toy was my Lego
set. I had no brothers or sisters, and

growing up overseas, I often had to entertain
myself. I’d spend hours with those Legos,
building entire towns, creating strange
new vehicles, and inventing mechanical
devices that worked via a kludgy mixture
of rubberbands and pulleys. I never had
the fancy sets with battery-operated motors
and special parts; I was forced to make do
with generic pieces. This spurred my imagi-
nation and increased my problem-solving
skills. I had disdain for my U.S.-resident
cousins who always had the special kits
and unique pieces. Where was the chal-
lenge in that?

Years later, I discovered computers.
Computers in the early- and mid-eighties
were a lot like Legos. They could be made
to do anything you could imagine, with the
only catch being that you had to figure out
how to control them.

It was during those heady days of
discovery that I realized the true beauty
and power of a computer. A computer
wasn’t a single device like a typewriter
or calculator. It was hundreds of devices,
thousands, millions. By simply running a
different program the computer became
a different device. What a fantastic
concept!

I fell in love with computers not because
they let me rewrite my stories or because of
a cool game or some neat graphics I saw,
but because of their infinite potential.

Today’s computers are more like today’s
Legos: there are special kits for all sorts of
projects. You need something to organize
your videotape collection? Bingo, buy

a program. You need to retouch photo-
graphs? Send Adobe your money. Sure,
there’s some learning overhead and the
program can’t always do exactly what you
want, but overall, the major work has been
done for you.

But where’s the challenge in that? What
if you need something unique? What if you
want to do something no one else has ever
done? Perhaps your needs are so specialized
there aren’t any mass-market solutions for
your situation.

The Custom Solution
The solution is simple: write your own

software. In the early days of computers

this was standard. Big mainframes arrived
empty and dumb: you had to program them
to make them do something useful. Every
personal computer shipped with a version
BASIC, a fairly ease-to-use programming
language.

As computers became more mainstream,
however, writing your own software became
less and less important. The average
consumer today has about as much interest
in learning to program their computer as a
screwdriver owner wants to know how to
build a house. Programming computers,
like house-building, is complicated and
time-consuming.

At least, it used to be.
Now REAL Software has created

REALbasic, the most amazing develop-
ment environment the Macintosh has
ever seen. Fans of Apple’s innovative
HyperCard might protest that statement,
but HyperCard hasn’t been updated in years
and never really took advantage of modern
capabilities like QuickTime, or supported
the Internet.

Why You Should Care
If you’re used to buying shrinkwrapped

software packages you might wonder why
you’d want to bother learning how to
program. Isn’t that something better left
to the experts?

Absolutely not. Programming is some-
thing everyone should learn. Programming
skills will enhance every aspect of your
life.

First, programming your computer to do
something it couldn’t do before is one of
the most satisfying things in the world. It’s
like teaching your dog a new trick — you
want to demonstrate it to everyone. Except,
of course, a computer program is more
obedient (and generally more useful). In Marc’s dream project is a virtual

Lego set. Just think — no more
missing pieces!

Cover Sto ry
by Marc Zeedar

The REALbasic Revolution
Now anyone can program

With REALbasic, your destination is
only limited by your imagination.

16 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 17

short, programming, despite the ominous
connotations of the word, is fun!

Second, programming expands your
mind. The only limits are your imagina-
tion. Want to invent a new computer game?
Have an idea for a simple utility that would
enhance your real estate business? Need
to analyze gobs of data you’ve collected
over the years? Hate how a scheduling
program forces you to work? Write your
own software! There are no rules when
you’re in charge.

Third, learning to program teaches you
to think logically. No longer can you tell
someone “Organize these files.” Instead
it’s, “Sort these files alphabetically by last
name, putting any duplicates in chrono-
logical order, and trash any obsolete ones.”
Precision helps with all forms of commu-
nication — people will understand you
better, you’ll understand yourself better,
and your whole life will improve.

Fourth, you can save yourself time and
money. Let’s use a car analogy. Learning
a little bit about how your car works, how
to change your own oil, and even how to
replace a few parts, is invaluable. No longer
are you dependent on the price-gouging
mechanic up the street. No longer do
you shudder when your car makes that
strange pinging sound when going up
hill, wondering if you’re in for another
$1,000 repair bill. Learning programming
is the same thing: you’re more confident
in your computer knowledge, less likely to
waste money on consultants or expensive
one-shot programs. Sure, there’s an initial
investment of time and energy, but the pay-
off is life-long.

Fifth, your software enhances the
community. How much of your computer
experience is made more positive by caring,
generous people who donated their time
and skills to make your life easier? Even
if you’ve never installed a shareware or
freeware program in your life, the Mac
operating system is full of ideas and
technology donated to the Mac community.
There’s the Internet control panel (formerly

known as the freeware Internet Config),
Stuffit Expander and Dropstuff (based on
the popular Stuffit compression standard
invented by a 15-year-old student), plus
Stickies, Windowshow, Boomerang, Apple
Menu Options, Launcher, and dozens of

others. The arrival of Mac OS X is starting
this whole process over again.

If you go to any of the popular down-
load sites or open a MacAddict CD you’ll
find thousands of free or practically free
programs. Most of these are programs that
would never succeed commercially — not
because of poor quality, but simply because
they appeal to a tiny, vertical market. How
many people need a ciceros-to-centimeter
calculator or a soccer statistics database?
Those that do, of course, are incredibly
grateful. But if it weren’t for hobbyists or
people donating their spare time, many of
those programs would never be written.

Sixth, programming can make you
money! Perhaps not much money, unless
you start your own business and go to
work full-time, but many people who
originally wrote a program just for them-
selves discovered others were willing to
pay $10 or $20 for it. Get a few hundred
users and we’re talking about some serious
mad money. Programming skills could lead
to new responsibilities at work or even a
new career!

Get Started Now
Don’t think that programming’s some-

thing esoteric and complex and only for

ambitious Bill Gates clones. The fact is,
any time you use your computer you are
programming it! A computer does nothing
without specific instructions. Programming
is simply a form of instructing the computer.
Double-clicking an icon to open a file is a
form of instruction.

In the past decade programming has
become much easier. Scripting languages
like AppleScript have made basic program-
ming techniques commonplace. People who
never thought of themselves as program-
mers have suddenly found themselves
writing Javascripts for the web, or using
Lingo in Director.

But scripting systems are always limited.
They are slow, don’t let you fully access the
power of your computer, and rarely provide
you with the tools to create true Macintosh
applications with standard interfaces.

REALbasic is different. It’s revolutionary
not because it’s easy to use (HyperCard
was easy to use) but because it creates
Mac applications indistinguishable from
programs written in high-level languages
like C++ and Pascal. In fact, if you don’t
tell, chances are people will never know you
wrote your program in REALbasic!

Because of REALbasic, thousands of
people who never thought of themselves
as programmers are programming.
Traditional programmers are embracing
RB because of its power and speedy
development. Teachers are using it as an
educational tool. Corporations are writing
utilities in-house instead of hiring expen-
sive consultants. High school students are
starting their own shareware companies,
creating useful and innovative solutions
to rare problems. Scientists, graphic
designers, artists, musicians, and others
in non-programming fields are using
REALbasic in creative and unexpected
ways.

Who knows where this will lead?
Perhaps the next Tetris will be created by
someone fooling around with REALbasic.
Perhaps interface innovations first seen in
REALbasic programs will be adopted by
Apple or Microsoft, revolutionizing the
way we use our computers.

I believe the software industry and
ultimately the world will be changed by
non-programmers being given the freedom
to program. Instead of suffering silently
at the mercy of monolithic corporations
who tell us “This is the way it is!” we can
take the helm and set our own destination.
After all, we’re the users — we know how
things should work, just not how to make
them that way. Until now.

Welcome to the Revolution. Welcome
to the future.

The software industry and

ultimately the world will be

changed by non-programmers

being given the freedom to

program.

Figure 1: The logo for Z-Write. Doesn’t it make sense that a writer, not a
programmer, should write a word processor?

RBD# 1003

18 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 19

Nearly every software developer has
a need to generate some animated

graphics sooner or later. Animation is the
bread and butter of game developers, but it
can be used effectively in many other places
as well, from an eye-catching About Box to
a custom progress indicator. REALbasic
provides several different ways to produce
animation, each with pros and cons.

In this article, we’ll pose a moderately
simple animation problem: an image of
a rocket flying over a starry background,
trailing little puffs of smoke. Then we’ll
solve this in three different ways: using
a simple Canvas, using a SpriteSurface,
and using an Rb3DSpace. By the end,
you should be well-equipped to use the
right tool for any animation job.

The Problem
For the sake of this article, assume you

need to make a rocket fly over a background
of stars. Every now and then the rocket
emits a little puff of smoke which should
move in the direction opposite that of the
rocket, expand a bit, and then disappear. If
possible, the smoke puffs should be trans-
lucent (because translucency is cool).

So we’ll be working with basically three
images: the rocket itself, the background,
and the smoke puff. The smoke puff actu-
ally requires a series of images, so we can
make it expand and grow more diffuse.
To reduce the number of files we have to
work with, we’ll combine all the smoke puff
images into one picture. Since we want
the smoke puffs to be translucent they also

need a mask; we’ll put that into the same
source picture too.

The three source pictures are shown
in Figure 1. If you’re creating your own
images in order to follow along at home,
be sure to use the same names and sizes
or else you’ll have to make some adjust-
ments to the code.

All three solutions to this problem will
involve these pictures, and the easiest way
to access them is to simply drag them into
your project and refer to them by name.
So start with the default new project and
add the pictures. The rocket image is
designed for white areas to appear trans-
parent, so select RocketImg in the project
window and in the Properties window set
Transparent to 1.

The downloadable project associated
with this article will demonstrate all three
techniques in one application, but to keep it
simple you might want to use three separate
projects. In any case, your project window
should look like that in Figure 2.

The Canvas Solution
Let’s first tackle this problem by using

that Swiss Army knife of all things graph-
ical, the Canvas. A Canvas is basically just
a rectangular area of a window where we
can draw things, and that’s just what we
want to do here.

Start by dragging a Canvas from the
toolbar onto your window, and via the
Properties window, set its Backdrop to
BackgroundImg. You could set the width
and height to 400 here or do it in code (the
sample project does the latter, so we can
see all three solutions while working in the
IDE). In either case, the Canvas should
now look like a starry square.

At this point, I’d be tempted to hit
command-R to run the program. It
works! It doesn’t do anything except

display a bunch of stars, but apart from
the rocket and the smoke puffs, it’s
completely done.

The next step is drawing a rocket.
Thinking ahead a bit, we’re going to have
a timer or a loop that periodically updates
the display. So make an “UpdateCanvas”
subroutine within Window1. That will
have code to grab the size of the rocket
and compute its X (horizontal) position
within the Canvas:

 Dim x, w, h As Integer

 x = CanvasDisplay.width / 2

 w = RocketImg.width

 h = RocketImg.height

and then draw the rocket into the Canvas’
graphics property:

 CanvasDisplay.graphics.DrawPicture RocketImg,
x, 200, w, h, 0, 0, w, h

Of course, this method won’t do any
good if we don’t call it. So let’s go ahead
and add that Timer. Drag a Timer control
onto your window, and via the Properties
window, set its Period to 10 (i.e. 10 milli-
seconds, which is about as fast as a Timer
can go). Double-click it, and in its Action
event type:

 UpdateCanvas

Now run the program again. We now
have a rocket drawn against a field of stars.
That’s definite progress, but the article
title says “animation,” so we’d better get
it moving.

Create a new property of the window,
“mShipY as Integer.” This will be the Y
(vertical) position of the ship within the
display. Now return to the UpdateCanvas

Joe Strout is a senior software
engineer at REAL Software, and

likes to dabble in making games with
REALbasic.

Feature
by Joe Strout

Three Ways to Animate
Choosing the best animation technique for your program

18 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 19

code. The DrawPicture call that draws the
rocket needs to be replaced with a few lines
that erase the old rocket (by drawing a
section of the background where the rocket
used to be), update the rocket position, and
draw the new rocket, like so:

 Dim g As Graphics

 g = CanvasDisplay.graphics

 // Erase the ship at the old position

 g.DrawPicture BackgroundImg, x, mShipY, w, h,
x, mShipY, w, h

 // Update the ship position

 mShipY = mShipY - 4

 if mShipY < -h then

 mShipY = CanvasDisplay.height

 end if

 // Draw the ship in its new position

 g.DrawPicture RocketImg, x, mShipY, w, h, 0,
0, w, h

Note that to avoid typing
“CanvasDisplay.graphics” multiple times,
I’ve also declared a new local variable “g”
and set it to mean the same thing. This
will become even more convenient as our
animation gets more complex.

The program at this point should display
a rocket that flies up the screen, and when
it disappears off the top, it reappears at the
bottom. The problem is nearly solved; all
that’s left is the puffs of smoke.

The smoke puffs require a little more
bookkeeping because there may be several
of them, and they change shape as well
as move. We also need to carve up that
PuffImg composite picture into separate

little pictures. So start by declaring a new
property, “mPuffPics(3) As Picture” (allo-
cating space for four pictures, numbered
0, 1, 2, and 3). Then add code like the
following to the window’s Open event:

 Dim i As Integer

 // prepare the smoke puffs

 for i = 0 to 3

 mPuffPics(i) = NewPicture(32, 32, 32)

 mPuffPics(i).graphics.DrawPicture PuffImg,
0, 0, 32, 32, i*32, 0, 32, 32

 mPuffPics(i).mask.graphics.DrawPicture
PuffImg, 0, 0, 32, 32, i*32, 32, 32, 32

 next

This copies square 32-by-32 pixel
sections of the original PuffImg into four
separate images that include masks, so
they’ll be translucent when drawn.

Now we have the images we want to
draw, but we need some more properties
to keep track of where to draw them and
what state they’re in. So declare two more
properties: “mPuffY(-1) As Integer,” and
“mPuffAge(-1) As Integer.” Both of these
are arrays which are initially empty (upper
bound of -1). The first, mPuffY, will be used
to keep track of the Y (vertical) position of
each puff of smoke. The second, mPuffAge,
will keep track of how long each puff has
been around so we can make it change
shape and eventually disappear as it ages.
We’ll keep these two arrays in parallel, so
that mPuffAge(i) is always the age of the
puff to be drawn at mPuffY(i).

Now we can add a smoke puff by
appending to these arrays. In the
UpdateCanvas method, right before

updating the ship position, insert this
code:

 // Consider adding a smoke puff

 if Rnd < 0.1 then

 mPuffAge.Append 0

 mPuffY.Append mShipY + h - 24

 end if

This code has a 10% chance of generating
a puff of smoke on each frame. When it
does add a puff, it’s given an initial age
of 0 and a position that is related to the
ship position.

Next, we’ll need code to update and draw
the smoke puffs; insert this right before we
draw the ship:

 // Update and draw the smoke puffs

 for i = UBound(mPuffY) downTo 0

 puffNum = 3 - mPuffAge(i) / 5

 if puffNum < 0 then

 mPuffY.Remove i

 mPuffAge.Remove i

 else

 mPuffAge(i) = mPuffAge(i) + 1

 mPuffY(i) = mPuffY(i) + 3

 g.DrawPicture mPuffPics(puffNum), x + 8,
mPuffY(i)

 end if

 next

This code appears a little complex, but
it’s not doing too much. First we find the
puff image number (puffNum) based on
the puff age, dividing by five so that the
image changes every five frames. The
image number is going to be 3 for brand
new puffs, and go down to 0 for old puffs;
if it gets beyond 0, then we remove the puff
entirely. Otherwise, we increment the puff
age, move the puff downward (+3 in Y),
and draw the chosen puff image.

If you run the project at this point, you’ll
see pretty dense smoke as we’ve neglected
to erase the smoke puffs once they’re drawn.

Figure 1: Images needed for the flying-rocket demonstration.

Figure 2: Sample project window,
showing elements needed for this
project.

20 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 21

So finally, we need to add a bit of erasing
code right after erasing the ship:

 // Erase the smoke puffs

 for i = Ubound(mPuffY) downTo 0

 g.DrawPicture BackgroundImg, x+8, mPuffY(i),
32, 32, x+8, mPuffY(i), 32, 32

 next

The logic here is exactly the same as for
erasing the ship, except that we’re doing it
in a loop to make sure we get all the smoke
puffs. (Note that for this particular case
we could instead erase the entire column
of ship and puffs with a single DrawPicture
— this may or may not be faster than erasing
each shape individually, depending on how
many shapes there are and how much they
overlap).

At this point, you should have a rocket
that flies over a starry field and emits little
animated puffs of smoke. But you may
notice that in addition to flying and puffing,
your display is doing a fair bit of flickering,
too — at least, if you’re not running in OS
X. That’s because we’re erasing and then
redrawing right on the screen, where
everybody can see it (except in OS X,
which automatically buffers all drawing).
This flicker can be eliminated through a
process called “double buffering."

Double buffering means that you do
your erasing and redrawing in an off-
screen picture first where it can’t be seen;
then you copy this picture to the screen.
This eliminates flicker because the screen
never appears in the “erased” state. Start by
declaring a new property, “mCanvasBuffer
As Picture.” In the Open event we’ll need
to initialize this to have the same size and
background as the display:

 // initialize the canvas display

 mShipY = 200

 mCanvasBuffer = NewPicture(400, 400, 32)

 mCanvasBuffer.graphics.DrawPicture
BackgroundImg, 0, 0

Then, in the UpdateCanvas method,
we want to draw to this picture instead of
to the Canvas itself. I added a checkbox
called “DoubleBufChk” to the demo project
so that double-buffering could be toggled
at runtime; the graphics-selection code
looks like this:

 if DoubleBufChk.value then

 g = mCanvasBuffer.graphics

 else

 g = CanvasDisplay.graphics

 end if

Finally, after all the drawing is done, we
need to copy from the buffer to the Canvas.
This will be rather slow if we copy the whole
thing, so it’s important to copy a smaller
region if possible. This particular anima-
tion takes place in a narrow column that
encloses the rocket and smoke puffs, so
we’ll copy just that:

 if DoubleBufChk.value then

 CanvasDisplay.graphics.DrawPicture
mCanvasBuffer, x, 0, w, 400, x, 0, w, 400

 end if

That’s pretty much it for Canvas anima-
tion. There is one remaining snag, which
affects you only if you’re running on OS
X and animating directly from a program
loop rather than from a timer. Recall that
OS X automatically buffers all drawing for
you; when you think you’re drawing to the
screen you’re actually drawing to an invis-
ible window buffer. The system normally
“flushes” this buffer to the screen during
idle moments, such as in between Timer
firings. But if you’re animating from a tight
loop there’s no idling until the loop is over.
So you may not see the animation at all;
instead, you’d only see the last frame.

To fix this, you might try to call
CanvasDisplay.Refresh. But the Refresh
method of any control tells it to erase
and redraw itself in its entirety, which
is exactly what we don’t want to happen
here. So instead, we can use Declare
statements to access the GetWindowPort
and QDFlushPortBuffer function calls in
CarbonLib. These tell the system to flush
the window buffer to the screen immedi-
ately, instead of waiting for some later
opportunity. Note that the call works but
does nothing if running under Carbon
in OS 8/9, so it’s safe to call whenever
TargetCarbon is true.

Listing 1 shows the UpdateCanvas
method in its entirety. You’ll also find this
in the demo project on the RB Developer
web site.

The SpriteSurface Solution
The SpriteSurface is a control specifically

designed for doing 2D animation. As such,
it’s often the first (and sometimes the only)
approach many RB users think of when
considering an animation problem. As
we’ll see in this section, the SpriteSurface
imposes some limitations on what you can
do, but within those limitations the anima-
tion is considerably easier to code.

The initial set-up is very similar to that
for the Canvas approach. Start by dragging
a SpriteSurface onto the window from the
controls palette. Name it SpriteDisplay,
and set its background to BackgroundImg
using the Properties window. Notice that
unlike the Canvas, the background is not
drawn while in the IDE; as soon as you
run your project you should see the field
of stars.

We’ll need the same preparation of
mPuffPics in the Open event (although
in this case you could skip building the
mask since it will be ignored). In addition,
we need to create a sprite to represent the
ship, as shown below.

 // prepare the smoke puffs

 for i = 0 to 3

 mPuffPics(i) = NewPicture(32, 32, 32)

 mPuffPics(i).graphics.DrawPicture PuffImg,
0, 0, 32, 32, i*32, 0, 32, 32

 next

 // initialize the sprite display

 mShipSprite = SpriteDisplay.NewSprite(RocketImg
, 200, 200)

Here, “mShipSprite” is a new window
property of type Sprite. The last line creates
a sprite at position X=200, Y=200, using
RocketImg as its shape. Now if you run
again, you should see a rocket stationary
against a field of stars.

To make it animate we’ll again use a
Timer, but have that Timer call a method
called “UpdateSprites.” Initially, we’ll have
that method simply move the ship:

 // Move the ship

 mShipSprite.Y = mShipSprite.Y - 4

 if mShipSprite.Y < -RocketImg.height then

 mShipSprite.Y = SpriteDisplay.Height

 end if

 // Update the display

 SpriteDisplay.Update

Run the program now and the ship
should be moving smoothly over the starry
background. That’s it — no erasing, no
buffering, no flushing. Just change the X

Figure 3: The rocket, flying in an
Rb3DSpace.

20 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 21

or Y property of a sprite, call Update on
the display, and repeat; sprite animation
is as simple as that.

Let’s finish the job by adding smoke
puffs. First, we must note that the
SpriteSurface control does not support
masks. Sprites are transparent where the
image pixels are white, and opaque where
the image pixels are non-white; the mask
is completely ignored. This means our
smoke puffs are going to look more like
solid balls of cotton than diffuse clouds
of smoke. Having accepted that, let’s get
to the code.

We’ll use the same concept of puff “age”
as we used for the Canvas. So creating a
new smoke puff involves appending a “zero”
to an array of puff ages, and creating a new
sprite on a parallel array of sprites (which
we’ll imaginatively call “mPuffSprites"). In
addition, we want to set the priority of the
puff sprites to -1; this causes them to be
drawn behind the ship, which by default has
a priority of 0. The code to be added to the
UpdateSprites method looks like this:

 // Consider adding a smoke puff

 if Rnd < 0.1 then

 mPuffAge.Append 0

 sp = SpriteDisplay.NewSprite(mPuffPics(3),
mShipSprite.x+8, mShipSprite.Y + 24)

 sp.priority = -1

 mPuffSprites.Append sp

 end if

Running at this point should produce
puffs that periodically appear behind the
ship, but don’t move or disappear. To
animate the puffs we’ll use a loop which
again is very similar to that used by the
Canvas. The main difference is that we
now need to update the mPuffSprites array
as well as mPuffAge.

 // Update the smoke puffs

 for i = UBound(mPuffSprites) downTo 0

 mPuffAge(i) = mPuffAge(i) + 1

 mPuffSprites(i).Y = mPuffSprites(i).Y + 3

 puffNum = 3 - mPuffAge(i) / 5

 if mPuffAge(i) mod 5 = 0 then

 if puffNum < 0 then

 mPuffSprites(i).Close

 mPuffSprites.Remove i

 mPuffAge.Remove i

 else

 mPuffSprites(i).image =
mPuffPics(puffNum)

 end if

 end if

 next

So, on every frame we move each puff
down 3 pixels and increment the age.
On every fifth frame we pick a different
shape, or if we’ve run out of shapes, we
delete the puff by closing the sprite and
removing the corresponding entries from
the two arrays.

And that’s all there is for this solution.
The complete UpdateSprites method is
shown in Listing 2.

The Rb3D Solution
The third control we’ll consider for this

problem is the Rb3DSpace. This control is
a view onto a virtual 3D world. “But wait,”
I can hear the reader saying, “This is a 2D
problem, so of what use is a 3D control?”

As it happens, an Rb3DSpace can
be set up to do very nice 2D sprite-like
graphics. The trick is to move the virtual
camera very far away from the scene, and
set the field of view to a very narrow angle.
This is equivalent to looking across town
with a telescope, and under these condi-
tions there is very little perspective effect.
This provides a nice undistorted view for
displaying pictures — but as a bonus, we
also get to treat them as 3D objects for
special effects like scaling or rotation.

Let’s start by dragging an Rb3DSpace
control from the controls palette onto the
window. Name it Rb3DDisplay and set

Code Listing #1:
Window1.UpdateCanvas
Sub UpdateCanvas()

 Dim g As Graphics

 Dim x, w, h As Integer

 Dim puffNum, i As Integer

 x = CanvasDisplay.width / 2

 w = RocketImg.width

 h = RocketImg.height

 if DoubleBufChk.value then

 g = mCanvasBuffer.graphics

 else

 g = CanvasDisplay.graphics

 end if

 // Erase the ship at the old position

 g.DrawPicture BackgroundImg, x, mShipY,
w, h, x, mShipY, w, h

 // Erase the smoke puffs

 for i = Ubound(mPuffY) downTo 0

 g.DrawPicture BackgroundImg, x+8,
mPuffY(i), 32, 32, x+8, mPuffY(i),
32, 32

 next

 // Consider adding a smoke puff

 if Rnd < 0.1 then

 mPuffAge.Append 0

 mPuffY.Append mShipY + h - 24

 end if

 // Update the ship position

 mShipY = mShipY - 4

 if mShipY < -h then

 mShipY = CanvasDisplay.height

 end if

 // Update and draw the smoke puffs

 for i = UBound(mPuffY) downTo 0

 puffNum = 3 - mPuffAge(i) / 5

 if puffNum < 0 then

 mPuffY.Remove i

 mPuffAge.Remove i

 else

 mPuffAge(i) = mPuffAge(i) + 1

 mPuffY(i) = mPuffY(i) + 3

 g.DrawPicture mPuffPics(puffNum),
x+8, mPuffY(i)

 end if

 next

 // Draw the ship in its new position

 g.DrawPicture RocketImg, x, mShipY, w,
h, 0, 0, w, h

 // If double-buffering, copy from the
buffer to the screen

 if DoubleBufChk.value then

 // If possible, copy only the part
that has changed —

 // though in a less trivial animation,
this can be difficult:

 CanvasDisplay.graphics.DrawPicture
mCanvasBuffer, x, 0, w, 400, x, 0,
w, 400

 // If necessary, copy everything —
this always works,

 // but it can be quite a bit slower:

 ’CanvasDisplay.graphics.DrawPicture
mCanvasBuffer, 0, 0

 end if

 // Finally, in Carbon (OS X), we need to
flush the port buffer

 #if TargetCarbon

 Declare Function GetWindowPort Lib
"CarbonLib" (window as WindowPtr)
as Integer

 Declare Sub QDFlushPortBuffer Lib
"CarbonLib" (port as Integer,
region as Integer)

 QDFlushPortBuffer GetWindowPort(self),
0

 #endif

End Sub

22 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 23

the SkyColor to a deep blue, matching
the background color of the star field.
Also set the FieldOfView to 10 (meaning
ten degrees), and prepare the lighting by
setting AmbientLight to 100 and FloodLight
to 0.

In the Open event we’ll finish preparing
the Rb3DSpace as follows:

 Dim degrees, angle, distance As Double

 Dim bg As Object3D

 if Rb3DDisplay.objects <> nil then

 degrees = 0.0174532925 // (radians per
degree)

 angle = Rb3DDisplay.fieldOfView * degrees *
0.5

 distance = 200 / sin(angle)

 Rb3DDisplay.camera.position.Z = distance

 Rb3DDisplay.hither = distance - 10

 Rb3DDisplay.yon = distance + 10

 mShipObj = New Object3D

 mShipObj.AddShapePicture RocketImg, 1.0

 Rb3DDisplay.objects.append mShipObj

 bg = New Object3D

 bg.AddShapePicture BackgroundImg, 1.0

 bg.position.Z = -1.0

 Rb3DDisplay.objects.append bg

 end if

This requires a new property, “mShipObj
As Object3D.” Note that we check to make
sure Rb3DDisplay.objects is non-nil before
attempting to use any 3D methods. This
is important, because the Rb3D classes
require a system library (Quesa or
QuickDraw 3D) to be installed. If it is not
installed most 3D methods will fail and
most properties of the Rb3DSpace will
be nil. So a check like the above serves to
handle that case gracefully.

The calculations after the check deter-
mine how far away the camera should be
in order to make one unit of 3D space
come out to one pixel on the screen. The
camera is then positioned accordingly, and
the Hither and Yon values are set to bracket
that distance (see the RB language refer-
ence for more info on these properties).

Next, we create the ship and the back-
ground using the AddShapePicture method
to convert our 2D pictures into objects in
a 3D world. The final parameter to this
call is the scaling factor — by specifying
1.0, we’re making one pixel in the picture
correspond to one unit of distance in the
3D space; a great convenience for this sort
of animation.

If you run your application at this point,
you should have a rocket in the middle of
the screen against a field of stars. Not very
exciting yet, but you know that under the
hood that’s a 3D rendering, and that lets us
do some things that would be very difficult
with the other approaches. For starters,
let’s make the rocket fly in a circle instead
of a straight line.

Start by adding a new property,
“mShipAngle as Double.” This will hold
the angle the ship is currently facing, which
also corresponds to the ship’s position
along its circular path. Then make an
UpdateRb3D subroutine, with code like
the following:

 Dim radius As Double

 radius = 100.0

 mShipObj.position.X = radius * cos(mShipAngle)

 mShipObj.position.Y = radius * sin(mShipAngle)

 mShipObj.orientation.SetRotateAboutAxis 0, 0,
1, mShipAngle

 Rb3DDisplay.Update

 mShipAngle = mShipAngle + 0.05

This simply does a bit of trigonom-
etry to find the ship position, and uses
SetRotateAboutAxis to rotate the ship.
We then increment the ship angle by
0.05 radians on each frame, which drives
the animation. Run your app now and
you should see the ship flying smoothly
in a circle — a feat that would leave the
SpriteSurface or Canvas dumbfounded.

Let’s complete the task by adding some
smoke puffs. We’ll have to keep track of a
bit more data in this case because each puff
can be moving in a different direction now,
rather than all the puffs moving downward.
Also, we’ll want to prepare a prototype 3D
object representing a smoke puff, which
we can then clone for each new puff we
need to display. So add two more proper-
ties, “mPuffPrototype As Object3D” and
“mPuffVelocity(-1) As Vector3D.” Now add
some code to the Open event as follows:

 mPuffPrototype = New Object3D

 for i = 0 to 3

 p = NewPicture(32, 32, 32)

 p.graphics.FillRect 0, 0, 32, 32

 p.graphics.DrawPicture mPuffPics(i), 0, 0

 mPuffPrototype.AddShapePictureWithMask p,
mPuffPics(i).mask, 1.0

 next

This initializes the puff prototype with
four different shapes, each created from

the corresponding puff picture. Note
that we don’t pass mPuffPics(i) directly
to AddShapePictureWithMask. The mask
used with Rb3D acts a bit differently than
it does in other contexts; the color pixels
have to be pre-multiplied by the mask. To
do that, we draw the image on top of a black
background, and then pass this composite
image on to Rb3D.

Finally, we need some additional code
in the UpdateRb3D routine to add, move,
and delete the puffs. I’ll just point out a
few highlights and refer to Listing 3 for the

Code Listing #2:
Window1.UpdateSprites
Sub UpdateSprites()

 Dim sp As Sprite

 Dim i, puffNum As Integer

 // Move the ship

 mShipSprite.Y = mShipSprite.Y - 4

 if mShipSprite.Y < -RocketImg.height then

 mShipSprite.Y = SpriteDisplay.Height

 end if

 // Consider adding a smoke puff

 if Rnd < 0.1 then

 mPuffAge.Append 0

 sp = SpriteDisplay.NewSprite(mPuffPic
s(3), mShipSprite.x+8,
mShipSprite.Y + 24)

 sp.priority = -1

 mPuffSprites.Append sp

 end if

 // Update the smoke puffs

 for i = UBound(mPuffSprites) downTo 0

 mPuffAge(i) = mPuffAge(i) + 1

 mPuffSprites(i).Y = mPuffSprites(i).Y
+ 3

 puffNum = 3 - mPuffAge(i) / 5

 if mPuffAge(i) mod 5 = 0 then

 if puffNum < 0 then

 mPuffSprites(i).Close

 mPuffSprites.Remove i

 mPuffAge.Remove i

 else

 mPuffSprites(i).image =
mPuffPics(puffNum)

 end if

 end if

 next

 // Update the display

 SpriteDisplay.Update

End Sub

22 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 23

full code. First, we get a puff’s initial velocity by transforming a
vector by the ship’s orientation:

 v = New Vector3D

 v.y = -3.0

 v = mShipObj.orientation.Transform(v)

 mPuffVelocity.Append v

We start out with a velocity of -3 in Y, which would move the
puff 3 units downward per frame. But then we transform this by
the ship’s orientation so that this direction rotates to match the
ship. We could have instead done some trigonometry like we did
for the ship position, but this approach is simpler.

Next, notice the line “obj.position.z = -0.1” where we create the
smoke puff. There is no notion of “priority” in a 3D rendering;
instead, if you want one object to appear behind another, you
move it further away. Our camera position has a positive Z, and
the ship is at Z = 0, so by putting the smoke puffs at Z = -0.1 we
ensure that they’re drawn behind the ship.

Finally, it’s worth pointing out how the
puff animation works. It’s so simple that
you might have missed it:

 obj.shape = puffNum

This line tells Rb3D that of all the
shapes that have been added to this object,
“puffNum” (a number from 0 to 3 in our
case) is the one that should be displayed.
This is different from the SpriteSurface,
where you attach a new image, or the
Canvas, where you decide what to draw
at drawing time. With Rb3D, you attach
all the images (shapes) you might need to
the object when you’re setting it up and
then just flip between them by assigning
to the Shape property.

With the code as shown in Listing 3, you should now have a
rocket that travels in a circle emitting translucent puffs of smoke
that move and dissipate believably, as in Figure 3.

Which to Use?
We’ve explored the three main approaches to animation in

REALbasic. None of them is clearly superior for all situations;
you’ll want to select the right approach for each job. Here are
some of the considerations to keep in mind.

First, simplicity of code. The SpriteSurface generally requires
the least code to make things move around over a background
without flicker. The Rb3DSpace generally requires a bit more
set-up, and a Canvas requires more work to make smooth anima-
tion. The Canvas also requires, under OS X, a Declare to force
the window to update; the SpriteSurface and Rb3DSpace handle
that automatically.

Next, consider features. The Canvas and Rb3DSpace can both
do scaling and translucency; an Rb3DSpace can also do rotation. A
SpriteSurface supports none of these. However, we didn’t consider
collision detection in this article. SpriteSurfaces have easy pixel-
level collision detection; with a Canvas or Rb3DSpace you’ll have
to detect your own collisions if you need them.

Performance is harder to quantify because it varies a great deal
with the details of the task. Canvas animations can outperform
other approaches when the area that changes on each frame is

Code Listing #3: Window1.UpdateRb3D
Sub UpdateRb3D()

 // Let’s make the ship fly in a circle (because we can!).

 Dim radius As Double

 Dim i, puffNum As Integer

 Dim grp As Group3D

 Dim pos, v As Vector3D

 Dim obj As Object3D

 // Move the ship

 radius = 100.0

 mShipObj.position.X = radius * cos(mShipAngle)

 mShipObj.position.Y = radius * sin(mShipAngle)

 mShipObj.orientation.SetRotateAboutAxis 0, 0, 1, mShipAngle

 // Consider adding a puff

 if Rnd < 0.1 then

 mPuffAge.Append 0

 v = New Vector3D

 v.y = -3.0

 v = mShipObj.orientation.Transform(v)

 mPuffVelocity.Append v

 obj = mPuffPrototype.Clone

 obj.position.x = mShipObj.position.x

 obj.position.y = mShipObj.position.y

 obj.position.z = -0.1

 Rb3DDisplay.objects.Append obj

 end if

 // Update the puffs

 // (which we’ll assume are all objects in the Rb3DSpace from 2 on)

 for i = UBound(mPuffVelocity) downTo 0

 puffNum = 3 - mPuffAge(i) / 5

 if puffNum < 0 then

 mPuffVelocity.Remove i

 mPuffAge.Remove i

 Rb3DDisplay.objects.Remove(i+2)

 else

 obj = Rb3DDisplay.objects.Item(i+2)

 obj.shape = puffNum

 v = mPuffVelocity(i)

 pos = obj.position

 pos.x = pos.x + v.x

 pos.y = pos.y + v.y

 pos.z = pos.z + v.z

 mPuffAge(i) = mPuffAge(i) + 1

 end if

 next

 // Update the display and ship angle

 Rb3DDisplay.Update

 mShipAngle = mShipAngle + 0.05

End Sub

Continued on page 27

[No method]
is clearly

superior for
all situations;
you’ll want
to select the

right approach
for each job.

24 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 25

Feature

The Regex class, along with the
RegexMatch, RegexOptions, and

RegexException classes, is the gateway
to REALbasic’s implementation of regular
expressions. Regular expressions are a way
of expressing a textual find or find-and-
replace that’s too complicated, or too vague,
for a function like InStr or Replace. To see
what I mean, let’s take an example.

Suppose you’ve got a string representing
some HTML, and you want to remove all
the HTML markup from it. An HTML tag
starts with a left angle-bracket and ends
with a right angle-bracket; the tag consists
of both angle-brackets, and everything in
between, like this: “<TAG>”. The trouble
is, of course, that you don’t know in
advance what “everything in between”
consists of.

So how would you find and remove an
HTML tag using just InStr? You’d have
to take a piecemeal approach. First you’d
have to find a left angle-bracket, and
remember where it is. Then you’d look for
a right angle-bracket that comes after the
left angle-bracket, and remember where it
is. Then you’d have to break up the string
into three pieces — what precedes the tag,
the tag itself, and what follows the tag
— and reassemble it without the middle
piece, thus deleting the tag. Here’s some
actual code.

 dim s, leftPart, rightPart as string
 dim starting, ending as integer

 s = // some text with HTML tags

 starting = inStr(s, "<")

 if starting > 0 then

 ending = inStr(starting, s, ">")

 if ending > 0 then

 leftPart = mid(s, 1, starting - 1)

 rightPart = mid(s, ending + 1)

 s = leftPart + rightPart

 end

 end

That’s not horrible — I purposely chose a
simple example to start with — but it’s not
very pleasant either. The code is fairly illeg-
ible, and it feels like we’re working much too
hard. The notion “a left angle-bracket, the
following right angle-bracket, and every-
thing in between” seems simple enough.
Yet we can’t express it with InStr, so we’re
having to implement it as a succession of
finds plus a sort of brute-force replacement,
all of which is ugly, error-prone, tedious,
and not very general; imagine having to
extend this into a loop where we remove
every HTML tag! Not much fun. Using
regular expression syntax, however, we can
express it, very simply, like this: <.*>

Regular expression syntax uses some
symbolism that may at first be strange to
you. But you can probably guess what’s
going on in this particular expression.
The angle-brackets mean angle-brackets,
and the dot-asterisk means “everything in
between.” That’s all there is to it. To demon-
strate this expression in action, here’s some
actual code for removing an HTML tag from
a string using the Regex class.

Example 1: Regex removal
of HTML tag
 dim s as string, r as regex

 r = new regex

 s = // some text with HTML tags

 r.options.greedy = false // disable greediness

 r.searchPattern = "<.*>"

 r.replacementPattern = ""

 s = r.replace(s)

I hope the cleanliness and elegance of
that example feels sufficiently compel-
ling that you’re encouraged to want to
learn more — because, make no mistake,
there is a learning curve to using regular
expressions. The good news, though, is that
regular expression syntax has achieved near
universality in the computer world, and
REALbasic’s implementation of regular
expressions is based on a widely used
freeware code library called PCRE (Perl-
compatible regular expressions). Once
you’ve learned how to use regular expres-
sions in REALbasic, you’ve also learned
how to use them in BBEdit, JavaScript, Perl,
Python, and PHP; regular expressions are
also used (with a slightly different syntax) in
Nisus Writer and Microsoft Word. So they
are certainly worth learning about.

This article can’t teach you all about
regular expressions; the subject is huge. I
strongly recommend Jeffrey Friedl’s book,
Mastering Regular Expressions from
O’Reilly and Associates, and REALbasic’s
online help for Regex provides a complete
guide to the syntactical details. What I’ll do
here is introduce you to regular expressions,
and explain how you use them through
REALbasic’s Regex-related classes.

Search Expression
There are two kinds of regular expres-

sions: the search expression, describing

Matt Neuburg first learned about
regular expressions while using

the Nisus word processor in 1990, and
hasn’t had a good night’s sleep since.

by Matt Neuburg

Expressions of Delight
REALbasic’s regex class

24 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 25

the text you want to look for; and the
replace expression, describing the text (if
any) that will replace the found text. The
search expression is far more powerful
and, since you’ll always need one, more
important.

Before we start, I have to tell you the
basic rule of how regular expression syntax
works. In a regular expression, certain char-
acters, such as the dot and the asterisk in
Example 1, have special meaning. The
basic rule of regular expressions is that if
a character has no special meaning, it just
represents itself in the normal way, like
the angle brackets in Example 1. If a char-
acter does have special meaning and you
want to use it to represent itself, without
that special meaning, you “escape” it by
putting a backslash (\) in front of it; for
example, * means an ordinary asterisk.
Also, if a character does not have special
meaning, you can sometimes give it special
meaning by putting a backslash in front of
it. For example, r is just a normal “r”, but
\r means a return character. I know this
sounds confusing, but it will be clearer
when we look at some more examples,
and if I don’t tell you about it up front we
can’t get started at all.

The best way to approach an under-
standing of regular expressions is to
consider that when we use InStr, every
character in the search expression repre-
sents an exact match, whereas the power
of a regular search expression lies largely
in its ability to be deliberately vague about
what we’re looking for. There are two main
kinds of things you get to be vague about:
what individual characters to look for, and
how many characters to look for. We’ll take
these in turn.

We begin with vague individual charac-
ters. What we want here is to make a single
character in the search expression stand
for more than one possible character to
look for. To do so, we list the acceptable
possibilities inside square brackets. This
is called a character set. For example,
[aeiou] means a single character that
might be a or e or i or o or u. This nota-
tion would get tedious if there were lots of
acceptable possibilities, so you can invert
it by making the first character inside the
square brackets a caret; now you’ve got
a list of all the unacceptable possibilities.
So, [^aeiou] means any single character
that isn’t a or e or i or o or u.

Also, a range of characters, using ASCII
order, can be specified by putting a hyphen
between the first and last characters of the
range; so [0-9] means any numeric digit,
and [0-9A-F] means any character that
might be used as a hexadecimal digit. This

is still rather tedious when a character set is
very frequently used, so the syntax defines
some character sets for you in advance. For
example, instead of [0-9] you can just say
\d and instead of [0-9a-zA-Z_] you can
say \w. And a dot (.) means any character
at all. Now let’s turn to vague quantities of
characters. To specify that a character can
occur a vague number of times, you put a
metacharacter after the character that is
to be repeated. For example, a plus sign
(+) means that the preceding character
must appear at least once but can occur
more times than that, in succession. Note
that this doesn’t mean that the very same
character has to appear several times in
succession, because the character to be
repeated might be a vague character. For
example, [aeiou]+ means any stretch of
any vowels, and will find the “eau” in “beau-
tiful.” A question mark (?) means that the
preceding character may appear once or
perhaps not at all, and an asterisk (*) means
that the preceding character may appear
once, not at all, or any number of times in
succession. Now you can understand how
we found an HTML tag with the expression
<.*> earlier; it means a left angle-bracket,
a right angle-bracket, and any characters
in any quantity between them.

When specifying vague quantities, you
must be concerned about “greediness.”
A greedy search is one that matches the
largest stretch it can find. Recall that in
Example 1, we disabled greediness before
starting the search. To see why, imagine
searching a string with two HTML tags in
it. A greedy search finds everything from
the start of the first HTML tag to the end
of the second HTML tag. A non-greedy
search finds just the first HTML tag, as
desired.

Performing the Search
To perform a search you need three

things: a string to look inside, a regular
search expression, and an instance of the
Regex class. You hand the Regex instance
the search expression as its SearchPattern
property, and then send the Regex instance
the Search message. If you provide just
one parameter for the Search message, that
parameter is the string to look inside, and
the search will start at the first character of
the string. If you provide two parameters,
the second parameter is the index of the
character where the search should start.
The character indexing is zero-based! This
contrasts unfortunately with InStr, where
character indexing is one-based.

The value returned when you send a
Regex instance the Search message is
an instance of the RegexMatch class.

You consult this instance to learn about
the results of the find. If the find failed,
the RegexMatch instance will be nil. If
the find succeeded, the RegexMatch’s
SubexpressionString(0) property will
contain the matched substring, and its
SubexpressionStart(0) property will
contain the index (zero-based again) of
the first character of the matched substring
within the original string. You’re probably
wondering what the “(0)” means here,
but don’t worry about it for now; just
trust me.

To illustrate, here’s a code snippet that
counts the number of runs of vowels in a
string. We do this by finding vowel runs in
successive iterations of a loop until the find
fails. Each time through the loop, we use the
start position and length of the previously
matched substring to determine where to
start the next search.

Example 2: Successive searches
 dim s as string, r as regex, m as regexmatch

 dim i, count as integer

 r = new regex

 s = “beautification”

 // has 5 vowel runs: “eau”, “i”, “i”, “a”, “io”

 r.searchPattern = "[aeiou]+"

 do

 m = r.search(s,i)

 if m <> nil then

 count = count + 1

 i = m.subExpressionStart(0)

 i = i + len(m.subExpressionString(0))

 end

 loop until m = nil

 msgbox str(count)

 // result is 5, the right answer

It seems wasteful to have to supply the
search string as a parameter to the Search
message every time through the loop when
that string isn’t changing. To save us from
having to do this, the Regex class permits a
different way of using the Search message.
Having performed the search once, so that
the Regex instance knows what the search
string is, we set the starting position for
the next search using the Regex instance’s
SearchStartPosition property and send it
the Search message with no parameters
at all. We can rewrite Example 2 to use
this syntax.

26 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 27

Example 3: Successive searches,
alternate syntax
 dim s as string, r as regex, m as regexmatch

 dim i, count as integer

 r = new regex

 s = “beautification”

 r.searchPattern = “[aeiou]+”

 m = r.search(s)

 while m <> nil

 count = count + 1

 i = m.subExpressionStart(0)

 i = i + len(m.subExpressionString(0))

 r.searchStartPosition = i

 m = r.search()

 wend

 msgbox str(count)

Parentheses and Subexpressions
In a regular search expression paren-

theses have two functions. One is simply to
group things. For example, you might want
to use a plus-sign to indicate a repetition,
not of a single character, but of a more
extended regular expression. To do so,
you’d group what precedes the plus-sign in
parentheses; the plus-sign would then apply
to the group as a whole. Thus the expres-
sion (p+e)+r would match “pepper”: first
we match the single “p” and the “e” that
follows it; then we try to do it again, and
we succeed, matching the double “p” and
the “e” that follows it; then we try to do it
again, and we fail; so we look to see if an
“r” follows, and it does, so we stop with a
successful match.

The other use of parentheses in a search
expression is to demarcate a substring of
whatever the search expression finds. This
is useful, for instance, when you have to
make a search expression where what
interests you about the result is not the
entire found string but only a certain part
of it. For example, suppose you want to
find a word starting with “anti,” but you
don’t care about the whole word; you’re
interested in what’s being opposed, so what
you really want to know is what follows
the “anti.” The regular search expression
anti(\w*) will perform the search; but
what do the parentheses do here? They
allow us to refer to the relevant substring of
whatever is found. The stuff found by what’s
in the parentheses of a search expression
is called a subexpression of the result. In
this case, it is subexpression 1, and you can
extract it from the resulting RegexMatch
instance with the SubexpressionString(1)
property and get its position with the
SubexpressionStart(1) property.

Example 4: Subexpression
 dim r as regex, m as regexMatch

 r = new regex

 r.searchPattern = “anti(\w*)”

 m = r.search(“The antithesis of synthesis.”)

 msgbox m.subexpressionString(1)

 // result is “thesis”

You can now understand what the “(0)”
is for in Examples 2 and 3. In a RegexMatch
instance, subexpression 0 is the entire
match result. Any other subexpressions
are parts of the result demarcated by
parentheses in the search expression.
The rule for how they are numbered is
simple: just count left-parentheses from
left to right. So, for example, if the search
expression were ((anti)(\w*)), then
the material following the “anti” would
be subexpression 3.

Another interesting use of subexpres-
sions is to refer to them within the search
expression. This is done by number,
preceded by a backslash; so, \3 means
subexpression 3. You use this to search
for material containing repetition at a
distance. For example, the expression
\w*(\w)\w*\1\w* looks for a word
containing the same character twice; it
matches “metre” which contains two e’s,
but it doesn’t match “metric” where no two
letters are the same.

Search and Replace
To perform a search-and-replace, you

assign a regular replace expression to the
Regex instance’s ReplacementPattern
property and send it the Replace message.
Regular replace expressions can refer to
subexpressions, using the same \3 nota-
tion we just talked about; otherwise they
are pretty much just ordinary strings. The
syntax of the Replace message is just like
that of the Search message. The result is
a string where the replacement has been
inserted into the original in place of the
found match.

Example 1 has already provided an
illustration of search-and-replace. Here’s
another, using a subexpression reference.
Suppose we’ve got a string from an email
message where the author indicated
emphasis by surrounding words with
asterisks. We want to turn this to HTML;
we will find a stretch surrounded by aster-
isks and replace the asterisks with “”
and “”.

Example 5: Search-and-replace
 dim r as regex, s as string

 r = new regex

 s = “This is a *very* important message.”

 r.searchPattern = “*(.*)*”

 r.replacementPattern = “\1"

 r.options.greedy = false

 s = r.replace(s)

 // result is "This is a very important
message."

Example 5 is very typical of a regular
expression search-and-replace. We look for
a stretch of text consisting of two asterisks
and everything in between, using syntax
we’re now very familiar with (Notice the
use of a backslash to show we mean an
actual asterisk.). But we’re only interested
in what’s between the asterisks; we want to
throw away the asterisks themselves. So in
the search expression we demarcate what
comes between the asterisks as a subex-
pression. That way we can refer to it in the
replace expression, which consists of “”
and “” surrounding whatever turned
out to be between the asterisks. The result,
in this particular case, is the replacement
string “very”. That whole replace-
ment string then replaces the whole found
string in the original string; thus, we end
up with just what we started with except
that the asterisks are gone and the HTML
markup is inserted.

We can take this even further, finding
and replacing with HTML all asterisked
expressions in a string that contains
several of them. It’s simply a matter of
inserting one line before performing the
replace, specifying that the replace should
be global:

Example 5a: Search-and-replace,
global
 ...

 s = “This *is* a *very* important message.”

 ...

 r.options.replaceAllMatches = true

 ...

 // result is “This is<.B> a

very important message."

Another way to do a replace is to perform
a search and then send the Replace
message to the resulting RegexMatch
instance. You can use a regular replace
expression as parameter, or omit the
parameter if you already set the Regex
instance’s ReplacementPattern property.
The result is the replacement string alone,
not the replacement string inserted into
the original. In this example, we look for

26 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 27

a seven-digit phone number in any of
several forms — “555-1234,” “5551234,”
or “555 1234” — and render it into canonical
form using a hyphen.

Example 6: Search-and-replace,
extracted
 dim r as regex, m as regexMatch

 dim s, canonical as string

 s = “The phone number is 5437890.”

 r = new regex

 r.searchPattern = “(\d\d\d)([-]?)(\d\d\d\d)”

 m = r.search(s)

 canonical = m.replace(“\1-\3”)

 // result is “543-7890”

Since the search result remains sitting
in the RegexMatch instance, you can now
proceed to perform a different replacement
without performing the entire search over
again.

Example 6a: Search-and-replace,
extracted, repeated
 dim r as regex, m as regexMatch

 dim s, canonical, noncanonical as string

 s = “The phone number is 5437890.”

 r = new regex

 r.searchPattern = “(\d\d\d)([-]?)(\d\d\d\d)”

 m = r.search(s)

 canonical = m.replace(“\1-\3”)

 // result is “543-7890”

 noncanonical = m.replace("\1 \3")

 // result is "543 7890"

You can also take advantage of the Perl
operators $` and $’ as metacharacters in
a regular replace expression; they stand
for the part of the original string respec-
tively preceding and following the found
string.

Example 7: Prematch operator
 dim r as regex, m as regexMatch

 dim s, prematch as string

 s = “The phone number is 5437890.”

 r = new regex

 r.searchPattern = “(\d\d\d)([-]?)(\d\d\d\d)”

 m = r.search(s)

 prematch = m.replace(“$`”)

 // result is “The phone number is “

Options
We had occasion in the preceding

examples to refer to the Options property
of a Regex instance. This is an instance of
the RegexOptions class, which has various
properties whose values determine the
behavior of subsequent searches. You can
examine the online help for RegexOptions

to study these properties. Besides greedi-
ness and whether a search-and-replace
should be global, there’s a setting for
case sensitivity. There are also a number of
settings having to do with the treatment of
line endings. The reason for these is partly
that different platforms use different line-
ending characters, and partly that regular
expressions were developed in a context of
being applied to just one line (or paragraph)
of text at a time, which might or might not
be the behavior you want.

Exceptions
If you supply a search expression that

can’t be parsed as a valid regular expres-
sion, REALbasic will throw an exception
when you send the Search or Replace
message. This will be an instance of the
RegexException class, and you can learn
more about the details of the problem
through its Message property. Of course,
you can also get a NilObjectException by
trying to extract property values from
a nil RegexMatch instance generated
by an unsuccessful search; and trying
to extract a SubexpressionString or a
SubexpressionStart using an index too
high for the number of subexpressions
in the search expression will generate an
OutOfBoundsException.

Expression Yourself
This discussion has not enumerated

every aspect of regular expressions, but
it has introduced the high points, and
you now know enough to get started
with REALbasic’s implementation of
regular expressions. You shouldn’t have
much difficulty understanding the list
of metacharacters in the online help for
Regex, and you’re well prepared, with a
little study, a little thought, and a little
experimentation, to do much of what can
be done with regular expressions.

Here are a couple of warnings. First,
regular expressions take practice. The
subject is a deep one, and adepts pride
themselves on their ability to construct
long, powerful, incomprehensible search
expressions. Second, don’t imagine that any
single regular expression can solve every
search problem. There’s nothing wrong
with breaking down a problem into several
searches, and often that’s the best solution.
Neither of these matters has anything to
do with REALbasic itself! Remember,
REALbasic simply implements a standard
form of regular expression syntax. Now get
out there and search some text!

RBD# 1005

very small (and you’re able to update just
that part of the frame). As the anima-
tion gets larger or more complex, Canvas
animation will suffer. SpriteSurfaces and
Rb3DSpaces hold up better under more
complex jobs, though with enough objects
they will both slow down. In the case of a
SpriteSurface, it’s the number of objects
that are actually moving or changing shape
that counts; with an Rb3DSpace it’s the
total number of visible objects (and their
complexity), even if they are unchanging
from frame to frame.

Finally, consider system requirements.
Canvas animation and SpriteSurfaces will
work on pretty much any system that RB
runs on. The Rb3DSpace requires support
from a system library, either QuickDraw
3D (on classic Mac OS) or Quesa (on any
system). These are free, but many users will
not have them by default (except perhaps
in classic Mac OS) so you might need to
ship your application as an installer that
includes the appropriate library.

Conclusion
The project associated with this article

includes all the code shown here, plus a few
extra perks that were omitted for brevity. It
lets you change among the three animation
methods, do some extra tricks like scaling
the view when rendering with Rb3D, and
measure the maximum attainable speed.
This lets you compare the three approaches
very directly. Do keep in mind that details
(especially performance) will vary greatly
depending on the particulars of the task
and on your system (e.g. whether you’re
using Quesa or QuickDraw 3D for the
Rb3DSpace).

If you’re looking to explore these anima-
tion techniques in more depth, I would
suggest you generalize the code to support
multiple rockets. This will let you see how
each approach scales up with an increasing
number of moving objects. Or, if you’re
interested in game development, you might
try connecting each of the update methods
to the keyboard state and see which one is
most pleasant to “fly.”

There are certainly other approaches to
animation in REALbasic, especially when
plug-ins are involved. But this covers the
most important ones; with a good under-
standing of these you’ll be well prepared
to handle any animation task.

REFERENCES
Quesa: http://www.quesa.org/

Three Ways to Animate
Continued from page 23

RBD# 1004

28 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 29

Beginner’s Corner
by Thomas J. Cunningham

Introducing REALbasic
For those just getting started

This column is targeted for the new
computer programmer. I program with

REALbasic (RB) as a hobby. I have tried
many other Mac programming applications
and RB is far and away the most satisfying.
It is a perfect development and learning
platform for beginners, students, and expe-
rienced programmers. Don’t let the BASIC
in REALbasic fool you: there is plenty of
power to write a wide assortment of fun,
useful, and professional applications.

I assume that if you have made the
commitment to this magazine, that you
are a proficient Mac user and that you
have at least spent a few hours going over
the QuickStart.pdf and word processing
tutorials that come with RB.

This column will back up a bit from the
tutorial and explain a few of the begin-
ning computer science issues introduced
in these guides. It is intended to be a
gentle course that will keep you inter-
ested in programming. Make no mistake
about it: programming, for most, does
not come naturally. It is a discipline that
takes time. Like trying to learn to play a
musical instrument, it takes patience, a bit
of dedication, and lots of practice to obtain
a certain level of fun and proficiency.

An Overview Of Programming with
REALbasic

Programming a computer. What does
this mean to you? The purpose of program-
ming is to tell our computer what we want it
to do. We want it to do certain tasks for us in
a manner that we, as the programmer, think
would be useful to a user, either ourselves

or someone else. Our computer does not
comprehend our human language. We need
something to take our human desires and
interpret these in a language that our Mac
understands. REALbasic is our interpreter.
Programming a computer can be described
by two principles: logic and math.

Now, it would be cool if we could just
tell RB, “would you please have my Mac
balance my checkbook for me?” Sorry,
RB is awesome, your Mac is the best, but
they are not that good. No, in order to have
RB help us program our Mac, we need to
learn the language that RB understands.
The RB language is not French, German,
or even English. It is a version of BASIC,
an acronym that stands for Beginner’s
All-purpose Symbolic Instruction
Code. REALbasic is just one of perhaps
hundreds of different variations of the
BASIC language. Please note that the “B”
in BASIC” stands for beginners, which is
good for us, right?

We give our instructions to RB via code.
Code can be thought of as a recipe of sorts.
Like baking cookies: “mix 1 cup of flour,
add sugar, bake, etc.” The computer science
word for this recipe is algorithm. When we
tell our program to “run” (command-R), RB
passes our instructions to the computer,
translating it into the language our Mac
understands: machine code.

In the past, most BASIC interpreters
used a “one window” coding approach

(see Figure 1). You would type in your code
instructions, line after line, and when you
were finished, you ran the program. This
interpreter would then read in, line-by-line,
each instruction, “printing” its answers in
another display window. REALbasic does
not use this approach, but instead inte-
grates several windows in to what is called
an Integrated Design Environment (IDE)
(see Figure 2).

REALbasic also has a very different
code execution approach than most BASIC
compilers. Yes, we will be writing code,
telling RB what we would like it to do, but
not in a singular code window. Instead, RB
reads and runs code segments from Events.
This event-driven method is a very intuitive
and powerful way to program, especially for
beginners. It does add a level of complexity,
since we have to learn what these events
are and when they happen, but in the end
this is a very good approach to program-
ming. And luckily, most of these events
are intuitive to Mac users.

So what is an RB event? Some examples
include: a mouse click, a mouse moving,
a window opening or closing, or a button
pushed, to name just a few. Each event is
associated with a particular item in your
program. So when this event occurs, then
and only then, is your code executed. The
specific events occurring with each item
are easy to find, since they are listed in the
code editor associated with that particular

Thomas has been enthusiastically
learning to program his Mac using

REALbasic since July 1999.
Figure 1: This is what a programming window looked like on an Apple IIe.

28 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 29

control item. Not all of these items have
the same events, but many do share
common events. Most of these events are
self explanatory, but some will take a bit
of time to understand. This is part of the
learning process of becoming familiar with
RB, so be patient.

Another excellent difference in RB from
line-by-line interpreters is the ability to
design what your user’s screen looks
like in your program. This is referred to
as your User Interface (UI). Most all of
your programs will have a main window.
Much like the words you are now reading
need to be printed on a once blank sheet of
paper, your program will need to place the
items you want to show in a main window.
The items that you can add include text,
buttons, edit boxes, and pictures, to name
a few. You have seen these control items
many times in all of the Mac programs you
currently use. They help to define the Mac
experience.

So where do these control items that
we place in a window come from? What
are these control items? Again, think of
this magazine as a real world example.
REALbasic comes with a plethora of built-
in “tools” for you to use in creating your
programs. They are conveniently listed in
a Tools Palette within the IDE. By “built-
in,” I mean they each have certain jobs or
tasks that they perform automatically for
us. They have already been programmed
by RB and are ready to use. These tools are
in computer science parlance referred to
as Classes. Think of these tools as the raw
materials, or building blocks, you will use
to construct an application.

You use the tools (classes) just like a
drawing program. You select one from
the tools palette and drag it into your
main design window. This window name
is, by default, “Window1.” You can drag
multiple copies of the same class in to your
main application window. Once you place

a tool in Window1, you
can position it where you
would like it to be, make
it bigger or smaller, or
otherwise change certain
characteristics of the tool.
These characteristics are
called properties. A class
has certain properties
associated with it. Most
of these properties can be
changed, via code, while
your application is oper-
ating (during “runtime”).
This is how your program
appears to interact with
its user in a (hopefully!)

intelligent manner: by changing certain
properties as various events occur.

For example, when a user places his or
her mouse cursor over a certain word, it
turns red; when it moves away, the word
returns to black.

This is how events and code execution
interact in RB to make your application
more engaging to the user. Also note that
RB takes care of a lot of the gory details
here, like what defines the area of the word
and the redrawing of the text.

Let me describe an example. Say we
want to create an application that dupli-
cates an advertisement page in a magazine.
Lets assume the page has some words, or
text with the product’s corporate byline,
and a picture in the background of the
product, BackYard Jets. Launch RB and
open Window1 (the default name of the
main window) from the project window by
double clicking on its name. Once open,
we drag a StaticText class (represented
by the “Aa” icon) from our tools palette
(which is on the left side of the screen).
This class tool building block will display
our text. We readjust its position within
the window, resize its width and height,
and enable its MultiLine property (using
the properties window located on the right
side of the screen). Enabling the MultiLine
property will allow the text to be shown on
more than one line. We type into the Text

Appearance area the “text” property we
want displayed.

Pretend the jet company has given you
a picture they want in the ad. All you have
to do is drag and drop the picture file in to
our project window, from your desktop, to
have access to the picture in your program.
We set our Window1 BackDrop property to
the name of the picture from the drop down
list. The picture will now be displayed when
we run our project (Command - R).

We run this little project and see
that it looks just like we want. We quit,
returning to our Integrated Development
Environment (IDE) to add one feature that
a print magazine can not offer. We drag
a pushbutton class tool (the “OK”) from
the tools menu to Window1 and change its
Caption property to read “Push me for more
info.” We adjust the button’s size proper-
ties so we can see this caption and place
it where we want. Now, while still in the
IDE, double-click the pushbutton, which
by default is named “pushbutton1”. This
reveals pushbutton1’s code editor.

In the action event of this pushbutton’s
code editor (“action” means when the user
presses this button), we write code that
will be executed when the user pushes
this button. I won’t bother with the actual
code here, but it will launch our user’s web
browser, taking them to this advertiser’s
web page. We now have a dynamic adver-
tisement with easy access for our user to
this product. Very cool, and it took little
time and effort, with RB’s help of course!
(See Figure 3).

I hope this brief overview of the RB
development experience has helped you!
Next issue we will go in to more depth with
specific details of the coding process.

Figure 2: REALbasic’s user interface is referred
to as the IDE.

Figure 3: Our fictitious advertisement
program.

RBD# 1006

30 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 31

Advanced Techniques
by Thomas Reed

Using the Declare Statement
It’s not as difficult as you think

The Mac OS has always been nice to look
at, but many folks don’t know about

the power under the hood. REALbasic
sometimes suffers from the same miscon-
ceptions, but like the Mac OS, the power
is there. In this column I’m going to talk
about one way to get “under the hood” in
REALbasic: using Declare statements.

A Declare statement allows you to call
system routines, enabling you to do things
for which REALbasic doesn’t have built-in
support. For example, a Declare statement
can call Process Manager routines from
the Mac Toolbox to get information about
currently running applications. This infor-
mation is not available through any native
REALbasic classes or methods.

Instead of repeating the information
found in the REALbasic documentation
regarding Declare statements, I’ll assume
throughout this article that you’re familiar
with it. The discussion will also be limited
to accessing Mac Toolbox routines; using
Declare statements to access system
routines under Windows is beyond the
scope of this article.

Building a Declare statement is the first
step in calling a Toolbox routine. To do
this you first need to know which system
routine you want to call and how it’s called.
You can find documentation for the various
Toolbox routines on Apple’s web site at
http://developer.apple.com/techpubs/.
Raw C function declarations can be found
in the “CIncludes” folder of the Universal
Interfaces. The Universal Interfaces can
be found at http://developer.apple.com/
sdk/index.html.

Once you have decided which routine
to call, you need to translate the C func-
tion declaration into a REALbasic Declare
statement. Let’s start with a fairly simple
example: suppose you want to call the
GetSysBeepVolume function. Its C func-
tion declaration is:

OSErr GetSysBeepVolume(long *level)

 FOURWORDINLINE(0x203C, 0x0224, 0x0018,
0xA800);

The corresponding REALbasic Declare
statement for a 68K or PPC build will be:

Declare Function GetSysBeepVolume Lib
“InterfaceLib” (byref level as integer)
as Short Inline68K(“203C02240018A800”)

To understand how I arrived at this
result, let’s start at the beginning of the
C declaration, which in this case is the
keyword OSErr. This is the return value,
and an OSErr is just a short integer. Thus,
it needs to be defined as a Function in the
Declare statement. In C, a return value
of void means the routine doesn’t return
anything. In that case, it would instead
be defined as a subroutine in the Declare
statement, using the keyword sub.

Next, we need to specify in which library
the routine is found. For almost all Toolbox
routines for PPC or 68K builds, this will
be InterfaceLib; while for Carbon builds
it will be CarbonLib. Note that you can
use preprocessor directives to include the
appropriate Declare statement for your
build. Here’s an example that will work
properly for all Mac OS builds (68K, PPC
or Carbon):

#if TargetCarbon

Declare Function GetSysBeepVolume Lib
“CarbonLib” (byref level as integer) as
Short

#else

Declare Function GetSysBeepVolume Lib
“InterfaceLib” (byref level as integer)
as Short Inline68K(“203C02240018A800”)

#endif

REALbasic 4.5 will introduce the ability
to use an OS-specific string constant to
specify the library, trimming the above
five lines of code down to one.

Next, the parameters are defined. Since
GetSysBeepVolume takes a pointer to a
long integer, you can handle this one of two
ways. The easy way is to make REALbasic
pass the parameter by reference using the
byref keyword and to define the parameter
as an integer. The hard way is to define
that parameter as being of type Ptr. We
will discuss how to determine parameter
types and what kind of variables to pass
as parameters in a moment.

If the routine has been defined as a
function, the next thing you need to do
is define a return type. In the example
of GetSysBeepVolume, the return type
is OSErr. If you look in the Universal
Interfaces or the documentation on
Apple’s web site, you will learn that OSErr
is a fancy name for a short, which is a 2-

Thomas Reed has been program-
ming as a hobbyist for more than

20 years, and fell in love with the Mac
in 1984.

RB Declare type RB variable type
OSType String
Short Integer
PString String
CString String
WindowPtr Window
Ptr MemoryBlock

Table 2: Some data types used with
Declares can’t be used in variable
declarations. This shows how these
“Declare-only” data types map to
regular REALbasic variable types.

30 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 31

byte integer. So, we define the routine as
returning a Short.

This is sufficient, unless you also want to
support 68K code, in which case you need to
include the Inline68K value. (As of version
4.0, RB no longer supports 68K builds.)

Look back at the Declare statement
for the GetSysBeepVolume routine and
you’ll find a long hexadecimal number in
the Inline68K parameter. This number is
derived by concatenating the numbers
found in the FOURWORDINLINE param-
eter of the C function definition. (Note that
the C definitions of other routines may
have a ONEWORDINLINE parameter,
TWOWORDINLINE parameter, etc.)

Building Declare statements this way
may seem difficult, but fortunately, you
can get some help from an excellent
program called TBFinder, available at
http://homepage.mac.com/everyday/
code/downloads/TBFinder.sit. TBFinder
will look up the C function definition and
build the Declare statement for you.

Now that you know how to build a
Declare statement, you need to know how
to use it: how to call it, what data types
you can use (yes, we’re not done with that
yet), and how to interpret complex data
structures. Calling a Toolbox routine is
simple, as long as you remember a few
simple rules. First, note that you must
enclose the parameters in parentheses
when calling functions while you should
omit the parentheses for subroutines.
Otherwise, the REALbasic compiler will
complain. Second, don’t try to use the result
of a function call directly as a parameter to
the Declared routine. You will first need to
store the value somewhere. Properties of
REALbasic objects should be considered
function calls.

Let’s return to the issue of how to
translate Toolbox and C data types into
REALbasic data types. Table 1 lists the
types available for use with Declares in
REALbasic and shows how they map to
some common Toolbox/C data types. You
should note that some of these data types
are interchangeable. For example, Integer,
Color, OSType, and Ptr are all 4-byte values,
so technically you could use OSType where
a Toolbox routine uses UInt32. Your choice
depends on how you will use the value.

For the most part, the types you use in a
Declare statement are the same as regular
REALbasic variable types. However, there
are some differences. For example, what
kind of variable do you pass to a routine
that expects an OSType? OSType isn’t a
REALbasic variable type! Table 2 shows
how some of the Declare types map to
REALbasic variable types.

Looking at Table 2, we see that if you
want to call a Toolbox routine that takes
an OSType as a parameter, you can just
pass in a REALbasic string. It will be trans-
lated into a 4-character OSType before the
Toolbox routine is called.

More complex data types offer other
challenges. You may notice that there are
a LOT of Toolbox data types missing from
Table 1! You’ll want to use REALbasic’s
MemoryBlock class for most of these.
For example, suppose you want to create
an FSSpec, which is the OS equivalent of
the FolderItem class in REALbasic. You’ll
need to create storage in memory for the
FSSpec, which requires that you know how
large it is. An FSSpec’s structure definition
in C looks like this:

struct FSSpec {

 short vRefNum;

 long parID;

 Str63 name;

};

If you know your Toolbox data types,
you’ll know this is 70 bytes. However, if
you’re not so sure, the size can be found
in the assembly language header files
that are part of the Universal Interfaces.
The structure definition in these headers
includes offsets for each field and the total
size of the structure. Consider the example
of an FSSpec:

FSSpec RECORD 0

vRefNum ds.w 1 ; offset: $0 (0)

parID ds.l 1 ; offset: $2 (2)

name ds StrFileName ; offset: $6 (6)

sizeof EQU * ; size: $46 (70)

 ENDR

Because it’s 70 bytes long, you would
use a MemoryBlock 70 bytes in size to pass
an FSSpec to Toolbox routines. Here’s an
example that creates an FSSpec from a
FolderItem:

 dim f as FolderItem

 dim fsspec as MemoryBlock

 dim err as integer

 dim fname as string

 Declare Function FSMakeFSSpec Lib "CarbonLib"
(vRefNum as Integer, dirID as Integer,
fileName as PString, spec as Ptr) as
Integer

RB Declare type Toolbox/C type
Integer long, int, SInt32, UInt32, Size, Handle, Ptr
Short short, SInt16, UInt16
Single float
Double double
Boolean boolean
Color same as Integer
WindowPtr† WindowPtr, WindowRef
PString ConstStr255Param, Str255, Str63
CString† char *
OSType† OSType, ResType, DescType
Ptr Handle, Ptr, any pointer type
† only to be used in parameters, not as return types

Table 1: This table shows which data type to use in your Declares to represent
some common Toolbox/C data types.

Unsigned longs
Since REALbasic doesn’t have an

unsigned long integer type, it may be
difficult to get such a value from an OS
routine. When you put a large enough
unsigned long in a REALbasic Integer,
it will inaccurately be represented as
a negative number.

The only way to represent a full
unsigned long integer is to store it in
a Double, which is an 8-byte value.
However, a little number crunching is
needed to get the real unsigned number
from the signed REALbasic Integer:

 dim i as integer

 dim d as double

 i = DoSomethingToGetAnUnsignedInteger()

 if i < 0 then

 d = BitwiseAnd(i, &h7FFFFFFF)

 d = d + 2147483648.0

 else

 d = i

 end if

Continued on page 48

32 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 33

Ask the Experts
by Seth Willits

with Thomas Reed & Sean Beach

In a program I’m writing, I’d like to
inlude a menu where the users can
add their own AppleScripts and
execute them. How can I implement
this?

A fully implemented Scripts menu is
seemingly involved, but easily imple-
mented through the use of available third
party plugins and modules. The two main
parts of a Scripts menu are handling the
dynamic menu items, and executing the
script as it is selected from the menu. To
add a little flavor, we can also add icons
to the menu title as well as the individual
menu items.

Dynamic Menu Items
This portion of the menu is by far the

most involved step in creating a working
Scripts menu. The idea is to create a menu
that can hold a variable number of menu
items pointing to scripts. The menu itself
will have one menu item called ScriptItem
which will have an index value of 0. With
this menu instated we can create two prop-
erties in the Aplication class; Scripts(-1)
as folderitem and ScriptItems as integer.
Next we can use the code in the listing
to dynamically create the menuitems in
the EnableMenuItems event. The code
depends on folderitems in the Scripts array
that point to the scripts themselves. You
can choose how to handle adding those
folderitems on your own.

 dim si as MenuItem

 dim i as integer

 // Scripts Menu

 ScriptsAddScript.enable

 // Hide the index

 ScriptItem(0).visible = false

 // Delete all items

 If ScriptItems > 0 then

 for i = ScriptItems downto 1

 ScriptItem(i).close

 next

 end if

 // Add items

 scriptItems = 0

 if UBound(scripts) > -1 then

 for i = 0 to UBound(Scripts)

 si = New ScriptItem

 si.text = Scripts(i).name

 si.enabled = true

 ScriptItems = ScriptItems + 1

 next

 end if

Executing the Scripts
Executing the scripts is a simple matter.

We will use Doug Holton’s AppleScript
plugin (http://www.geocities.com/d_
h_l_h/) to do this for us. By examining
the code in the EnableMenuItems event
you will see that the lower bound of the
ScriptItem menu item is not used. This
means we’ll have to subtract one from
the menuitem’s index property (in the
ScriptItem menu handler) to get the
correct Scripts() folderitem.

Once we have the folderitem pointing
to the script we can determine if it
is compiled or not by its Mactype. A
MacType of “TEXT” means the script has
not been compiled while a MacType of
“osas” means that it has. An uncompiled
script keeps the script code in the datafork
making it easy to simply open the file in
a text input stream, read everything, and
execute it using the RunScript method of
the AppleScript plugin. If the AppleScript
has been compiled we need to extract the
data from resource 128 of type “scpt”
and pass that as the parameter to the
RunCompiledScript method.

I have a few fields in my program
that should only contain numbers.
Unfortunately REALbasic doesn’t
offer a simple checkbox like for
password fields so I have to write
my own. How should I go about
this?

Number-Only fields simply filter
out keystrokes from keys other than
numbers, arrows, and the delete key. In
REALbasic we can do this filtering inside
of the KeyDown event of an editfield
by returning true if the key is one we
do NOT want to appear in the field. As
you can see in the code listing I chose to
use the InStr function instead of using
a series of conditions on the ASCII
value for simplicity (using InStr will not
noticably slow down the speed of typing
in the field unless it contains hundreds
of characters).

In this implementation, the field allows
the numbers 0-9, the delete, return, enter,
tab, and arrow keys to pass through. Letting
the tab key pass through prevents the inter-
ruption of tabbing from field to field. Just
make sure that you don’t have the Allow
Tabs property of the field enabled, other-
wise the tab will appear in the field!

Function KeyDown(Key As String) As Boolean

 if InStr(“0123456789” + chr(8) + chr(13) +
chr(9) + chr(3), key) > 0 then

 return false

 elseif asc(key) > 27 and asc(key) < 32 then

 return false

 else

 return true

 end if

End Function

My son is into racing go-karts and
I’d like to write a program to keep
track of all of his lap times and
other race specific information.
Since each race or practice session
can have a different number of
laps the difficult part of writing the
program is how to handle those
lap times. The only way I can think

Seth Willits, the President and Head
Developer of Freak Software, is

slowly working his way to becoming
a distinguished programmer for the
Macintosh. Thomas and Sean are
columnists for REALbasic Developer.
Send your “Ask the Experts” questions
to help@rbdeveloper.com. Due to the
volume of email, personal responses
are regretfully not possible.

mailto:help@rbdeveloper.com

32 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 33

of is to have a separate folder for
every race or practice session
which contains separate text files
for lap times and race info. While
this would work, it would be very
messy. What is a more elegant
solution?

This is a problem that arises and is
solved everyday using a relational
database. If you have not yet learned to
use REALbasic’s built-in database tools I
highly recommend that you do. Not only
will it enable you to write an elegant
solution to this problem, but it will help
you with many other similar problems in
the future.

To learn about databases in REALbasic, I
would recommend that you read the REAL
Database guide written by Seth Willits of
Freak Software. The instructions below
assume that you know how to create a
database and understand how to use it.

The general concept of the solution
to this problem is to have two tables in
a database. One table (RaceInfo) will
hold the race specific information (track,
date, etc.) and the other (LapTimes) will
only hold lap times. Each record in the
RaceInfo table will have an ID number
which is specific to that race event. Each
record of the LapTimes table will contain
an ID number which is the same as the ID
number of the race that the lap time was
recorded on.

Take a look at Figure 1. By matching the
RaceID from a lap time to a record in the
RaceInfo table with the same RaceID or vice
versa we can determine which lap times

belong to which race event. For examle, the
longest lap time is a 01:49:58 which has
a RaceID of 001. In the RaceInfo table we
search for the record with the RaceID of
001 and that’s the race that the lap time
belongs to. The slowest lap time occurred
at the California track on 01/02/02.

The table schemas for the database are
as follows:

RaceInfo (

 RaceID integer,

 Track varchar,

 Date varchar,

 Primary Key(RaceID)

)

LapTimes (

 ID integer,

 RaceID integer,

 LapTime varchar,

 Primary Key(ID)

)

Note that the RaceID field for the
RaceInfo table is the primary key, but in
the LapTimes table it is not. Every record
in the RaceInfo table will have a unique
RaceID but in the LapTimes table several
records will have the same RaceID.

Adding records to the database can be
handled anyway you’d like. Just keep in
mind that when you add lap times to the
LapTimes table they must have the same
RaceID as the corresponding record in the
RaceInfo table.

To extract all of the information from
the database at one time we’ll need to
use an instance of a custom class for each
race event. You can define the class as
follows:

 <Class>

 <Name>Event</Name>

 <Property>LapTimes(-1) as string</Property>

 <Property>Track as integer</Property>

 <Property>RaceDate as String</Property>

 </Class>

The code to read the data is as follows.

 dim e as Event

 dim curs, lapcurs as DatabaseCursor

 dim rid as integer

 // Select all race dates in the database

 curs = Database.SQLSelect("Select * from
RaceInfo")

 // For every race event

 do

 e = New Event

 e.Track = curs.Field("Track").getString

 e.RaceDate = curs.Field("Date").getString

 // Get the RaceID of the event

 rid = curs.Field("RaceID").integerValue

 // Select every lap time with the RaceID of
this event

 lapcurs = Database.SQLSelect("Select LapTime
from LapTimes where RaceID = " +
str(rid))

 do

 // Add the lap time to the laptimes array of
the event’s Event class instance

 e.laptimes.append lapcurs.field("LapTime")
.getString

 lapcurs.moveNext

 loop until lapcurs.eof

 lapcurs.close

 // Add Event class instance to the global
Events array

 Events.append e

 curs.moveNext

 loop until curs.eof

 curs.close

 lapcurs.close

REFERENCES
REAL Database Guide:

http://www.freaksw.com/rb-papers.html
Race Example Project: http://www.freaksw.comFigure 1: This is a graphical representation of the two tables that will be in your

database. Top: RaceInfo. Bottom: LapTimes.

RBD# 1008

34 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 35

The term “algorithm” can mean instruc-
tions for carrying out some typically

useful operation, but it can also mean a typi-
cally useful data structure and the methods
for working with it. A linked list is often one
of the first data structures treated in books
on algorithms, and it makes a good subject
for this first Algorithms column.

A linked list is a simple data structure
that’s useful chiefly because it’s dynamic.
This means you don’t have to set aside
storage for the data beforehand; instead,
the linked list grows and shrinks as the
program runs, as when data is added or
removed. In REALbasic this fact is not
very compelling, though, because arrays
are dynamic already! You can add data
with Insert or Append, and remove it with
Remove. Nevertheless, you can also very
easily implement a traditional linked list
in REALbasic, and it’s instructional to see
how. The principles involved are applicable
to more complicated and powerful data
structures, such as binary trees, that we
can examine in future columns.

The chief characteristic of a linked list is
that from each piece of data it is possible
to reach the next piece of data. The pieces
of data are connected by pointers; to reach
the next piece of data, follow this piece’s
pointer (see Figure 1).

To see why this is dynamic, consider how
you’d insert a new piece of data, “hi,” after
“hey”: just disconnect the pointer from
“hey” to “ho”, and make it run to “hi”
instead, and connect the pointer from
“hi” to “ho” (see Figure 2).

Let’s implement this in REALbasic. In
REALbasic, object references are pointers.
(See pp. 94-104 of my book for much more
about that.) So the problem is solved if
each piece of data is an object, and consists
of two things: the value to be stored, and
a reference to the next piece of data. An
object consisting of two things is merely
an instance of some class that has two
properties. Let’s call the class ListItem,
and let its two properties be called Value,
a variant (for generality), and NextItem,
another ListItem. It’s easy to see that, with
appropriate values for the properties of
each instance, we end up with a linked
list (see figure 3).

We can now implement Insert, handing
a ListItem the Value we want attached to
a new ListItem that will follow it.

ListItem.Insert:
Sub Insert(v As variant)

 dim newItem as ListItem

 newItem = new ListItem

 newItem.value = v

 newItem.nextItem = self.nextItem // (a)

 self.nextItem = newItem // (b)

End Sub

The last two lines, (a) and (b), perform
the disconnection and reconnection of
pointers that we talked about earlier.
After (a), for an instant, both the new item’s
NextItem and the target’s NextItem point
at the same thing; then in (b) we repoint
the target’s NextItem at the new item.
The order of operations is important! If
(b) precedes (a), then after (b), the target’s
NextItem no longer points at what was the
next item in the list — in fact, nothing at
all points to it, the item is lost, and the
list is ruined.

In REALbasic, an object reference that
has never been set explicitly is nil. This
fact makes it easy to obtain the last item in
the list, by following the chain of pointers
item by item until we come to one whose
NextItem is nil. This approach works no
matter what item of the list we target
initially. Following the whole chain of
pointers in this way is called traversing
the list, and can be neatly expressed in
REALbasic.

ListItem.LastItem:
Function LastItem() As ListItem

 dim x as listItem

 x = self

hey ho ha

Figure 1: A linked list

ho ha

hi

hey

Figure 2: Insertion into a linked list

Matt Neuburg is the author of
REALbasic: The Definitive Guide,

and a member of the editorial board of
REALbasic Developer.

Algor i thms
by Matt Neuburg

Linked Lists
Mind your stacks and queues

34 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 35

 while x.nextItem <> nil

 x = x.nextItem

 wend

 return x

End Function

As an exercise, implement Append. This
accepts a value and adds it at the end of
the list, no matter what item of the list
we target initially. Hint: combine LastItem
and Insert.

Finally, we implement RemoveNext.
When sent to an item of the list, it removes
the next item from the list. We first check
for a NextItem value of nil, since the target
might be the last item already; in that case,
obviously, we do nothing. Otherwise, we
just point the target’s NextItem at the
next item’s NextItem (see figure 4). The
instant we do this, nothing points at what
used to be the next item, whose existence
is promptly terminated by REALbasic’s
delightful memory management system.

ListItem.RemoveNext:
Sub RemoveNext

 if self.nextItem <> nil then

 self.nextItem = self.nextItem.nextItem

 end

End Sub

Stacks
A stack is a data structure where access to

the pieces of data works like a pile of plates:
you can add or remove an item only at the
top of the pile. Items can thus be retrieved
only in the reverse of the order in which
they were added; for this reason, a stack
is often described as LIFO (last in, first
out). The two fundamental operations on
a stack are called Push (add a new item at
the top of the stack) and Pop (remove the
topmost item from the stack and return
its value).

Under the hood, stacks are fundamental
to many computer operations, such as
calling subroutines. They also come in
handy during certain kinds of parsing
operations, and wherever backtracking is
involved. For example, a stack would be
a good way to implement an Undo list. In

the case of an EditField, every time the
EditField changes, you could Push its
current state (its text and style) onto the
stack; to Undo one level, just Pop the stack
to retrieve the previous state.

A stack is easily implemented as a linked
list. We might, indeed, have a class Stack
that is a subclass of ListItem. Suppose we
maintain somewhere a property or variable
called TheStack, which is a Stack. TheStack
represents the entire stack; Push and Pop
are sent only to it. But in reality it is the start
of a linked list, and points to the topmost
item of the actual stack.

Stack.Push:
Sub Push(v as variant)

 self.insert v

End Sub

Stack.Pop:
Function Pop() as variant

 dim v as variant

 if self.nextitem <> nil then

 v = self.nextitem.value // (a)

 self.deleteNext // (b)

 return v

 end

End Function

Again, order of operations is important.
We use a local variable to capture the value
to be returned, in (a), before deleting the
item that contained it, in (b). If (b) were
performed before (a), the value would be
destroyed before it could be returned; there
would be nothing to return.

Since, as mentioned earlier, a REALbasic
array is already a dynamic data structure,
Stack could just as well be implemented by
wrapping a variant array. Let’s start over.
Stack now has no superclass, and has a

single property, MyArray, a variant array
initially dimmed to size -1. We’ll treat the
end of the array as the top of the stack. So
Push just means Append.

Stack.Push:
Sub Push(v as variant)

 MyArray.append v

End Sub

As an exercise, implement Pop.
To the programmer, you’ll observe, it

doesn’t matter whether Stack is imple-
mented as a linked list or an array. This
is in keeping with the principle of abstrac-
tion: lower-level manipulation of data is
hidden inside a controller object. As much
as possible, you should try to program this
way. For one thing, other objects in your
program have no need to concern them-
selves with the underlying implementation
details; they just say Push or Pop and every-
thing simply works. This greatly reduces
the chances for error. Also, you could
change your mind about the underlying
implementation, changing it from a linked
list to an array for example, and all the calls
to Push and Pop throughout the program
would go right on working.

Queues
A queue is a data structure where access

to the pieces of data works like patrons
lined up to enter a movie theater: the first
patron to get on line will be the first patron
to enter the theatre, and so on. A queue is
often described as FIFO (first in, first out).
The fundamental operations on a queue are
called Queue (append an item to the tail of
the queue) and Dequeue (retrieve an item
from the front of the queue).

Queues often arise in threaded situa-
tions, where pending tasks can pile up
while a previous task is being performed.
For example, in an email client program,
we might allow the user to press the Send
button at any time, but we won’t actually
perform any new sending until we finish
with whatever message we may be sending
at the moment.

Implementation of Queue and Dequeue
are left as an exercise to the reader; do it
both ways, with a linked list and with an
array.

hey ho ha

Figure 4: Deletion from a linked list

hey

Value:

...
NextItem:

ho

Value:

NextItem:

ha

Value:

NextItem:

...

Figure 3: Linked list made of REALbasic objects

RBD# 1009

36 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 37

The Problem
You are writing a Quicken-killer in

REALbasic. You need to do a lot of input
validation — dates, currency input, names,
etc. You think, “Ah, RB has made it easy for
me — all I need to do is slap some validation
code in the LostFocus event handlers of the
editfields.” But writing a Quicken-killer is
a big job, and cut-and-paste is especially
efficient at propagating errors. It occurs to
you that you can subclass Editfield. So you
define DateEditField, NumberEditField,
CurrencyEditField, NonEmptyEditField,
TextLengthAtMostNEditfield, and other
subclasses. But as the subclasses begin
piling up — for instance, you need an
EditField subclass that accepts valid
currency input and must be nonempty
— the project begins to crumble under its
own weight. Then you decide that some
editfields must be able to change the valida-
tion method at runtime. Next, you need to
write an editable listbox requiring valida-
tion. And then Real Software introduces
a Text class....

The Solution
The common theme of this problem is

the need to validate text input. This is a task
that can be handed off to an object whose
sole purpose is to validate text. In other
words, we can create validating editfields
by composing an editfield and a validator
object; the editfield delegates the task of
validating input to a validator object.

We’ll still need to use inheritance to
write an EditField subclass which can use
validators. But it will be just one subclass
requiring simple coding and offering a
consistent interface; it’s very easy to intro-

duce small but annoying variations in the
interfaces of several similar subclasses.

There are two actors here, TextValidator
and ValidatingControl. Our next task is
to specify their roles; that is, we need to
declare their interfaces.

The main task I want to ask of a
TextValidator is to tell me whether a
string I pass it is valid. It would also be
nice to be able to ask a TextValidator for
an error message; if users enter invalid
data, they’ll want feedback more informa-
tive than a beep. Any class implementing
TextValidator can supply a default error
message (“Invalid Date”), but it would
probably be nice to be able to set an
error message more appropriate to the
context.

Class Interface TextValidator

 Method

 IsValid(text as String) as Boolean

 SetErrorMessage(msg as String)

 GetErrorMessage() as String

It’s easy to see that probably every class
implementing TextValidator will have a
property holding the error message, and
the implementations of SetErrorMessage
and GetErrorMessage will be the same.
So we’ll define a class (AbstractValidator,
in the associated project) imple-
menting basic functionality and let our
TextValidators inherit from it. For special
cases we can choose not to inherit from
AbstractValidator; this is an advantage of
factoring the validators into class interface
+ abstract class + concrete classes.

We’ll use the same idea for the editfield
subclass; that is, we’ll define a class inter-
face ValidatingControl which a subclass
ValidatingEditField will implement. Using
a class interface here is mostly for reasons
of clarity and convenience. Other controls,

like Listbox, can also implement this inter-
face; having the interface explicitly defined
helps to document the design.

Also, a window can maintain references
to ValidatingControl objects it contains,
instead of needing to loop through controls
looking for ValidatingControls to test.

ClassInterface ValidatingControl

 Methods

 AddValidator(validator as TextValidator)

 RemoveValidator(validator as TextValidator)

 IsValid() as Boolean

 ValidationErrorMessage() as String

The associated project contains an
implementation of a ValidatingEditField
and some TextValidators.

The Buzzwords
We’ve illustrated two principles of object-

oriented design:
Favor object composition over class

inheritance; and Program to an interface,
not an implementation.

By looking first to composition, our
design is built from objects focused on
clearly defined tasks. But composition
only works if we are careful to minimize
the extent to which these objects depend
on each other. The use of class interfaces
allows us to specify how these objects
can communicate; this allows us to make
internal changes to one class without
affecting others.

Further Reading
Design Patterns: Elements of Reusable

Object-Oriented Software contains an
excellent discussion of inheritance v.
composition starting on page 18.

Object-Oriented Thinking
by Charles Yeomans

Favor Composition Over Inheritance
Designing a validating editfield

Charles Yeomans is a software devel-
oper in Lexington, Kentucky.

RBD# 1010

36 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 37

In te l Focus
by Christian Schmitz

REALbasic Windows Support
What works and what doesn’t

About Windows Versions
In this column we will discuss

REALbasic’s capability to create applica-
tions for the Win32 platform. Windows
95, 98, ME, NT4, 2000, and XP all imple-
ment a growing subset of the Win32 API
(Application Programming Interface). But
these different implementations of Win32
are not equal, so you’ll find functions in
Windows 2000 which are in NT4 but not
in the newer 98 version of Windows.

We’ll mostly discuss functions which
are available in Windows 95 and newer.
Windows NT4 misses some of these
functions but Windows 2000 (which is a
renamed NT5) has all the functions from
95 and 98.

If readers request it, we can even discuss
using a Win32 subsystem on Linux (named
Wine) or Windows 3.11 (named Win32s).
If you use one of these versions of
Windows, send me an e-mail at cschmitz@
rbdeveloper.com and let me know.

REALbasic’s Mac-Only Features
Using REALbasic version 2.0 or later,

you can compile applications for Win32,
but obviously you need the Professional
version if your applications need to run
longer than five minutes.

People often ask for a list of functions and
objects in REALbasic which are Mac-only
and won’t compile for Windows. Before
getting to this, however, we need to learn
how to handle Mac-only features.

#if target
Using the keyword #if, you can tell

REALbasic to use conditional compiling.
For example:

 #If TargetWin32 then

 msgbox “This application runs on Windows!”

 #else

 msgbox “This application runs on Mac OS!”

 #endif

As you can see, this looks like a normal
if-then block but with the number sign
(“#”) in front of the keywords. Everything
which is not for the current platform will be
ignored by the compiler, which can reduce
application disk space (for example, an icon
for Windows is not compiled into the Mac
version). You can even build larger blocks
with nested #ifs like this one:

 #If TargetWin32 then

 msgbox “This application runs on Windows!”

 #else

 #if TargetCarbon then

 msgbox “This application runs on Mac OS
Carbon!”

 #else

 #if targetPPC then

 msgbox “This application runs on Mac OS Classic
on PPC!”

 #else

 #if target68k then

 msgbox “This application runs on Mac OS Classic
on 68k!”

 #else

 msgBox “Mac OS on something other than 68k or
PPC? Can’t be!”

 #endif

 #endif

 #endif

 #endif

Sadly there is no #elseif and REALbasic
doesn’t indent the lines like in normal if-

then blocks. Table 1 describes the target
constants.

AppleEvents and AppleScript
This first thing to note is that the

AppleEvent object on Windows is
completely non-functional. REALbasic will
compile it but it will just waste memory
and it does nothing for you. This is a good
case where the #if TargetMacOS directive
can be used to prevent the code from being
compiled on Windows.

You can add compiled AppleScripts into
your project and call them from inside your
applications using their name like in the
example below... but use #if TargetMacOS
to hide this from the Win32 compiler.

 #if TargetMacOS

 dim result as string

 result = MyAppleScript(“some value as
parameter”)

 #endif

Resource Forks
All functions to open a resourcefork

will refuse to work. Depending on your
REALbasic version, they will crash, return
nil or won’t even compile, so you should
again use a #if TargetMacOS directive.

Type and Creator codes
As a means of being user friendly,

Macintosh applications will sometimes
find files by their type and creator code
combination. For example, the Finder finds
Sherlock in Mac OS Classic by it’s creator
code. However, creator and type codes
are not supported on Windows and any
function which returns a code will return
an empty string. This may force you to
rewrite code to use a file extension to find
the files.

Christian Schmitz has written several
articles for the German magazine

Macwelt and has made many cross-plat-
form applications using REALbasic.

Continued on page 48

38 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 39

Before you can raise your hand to
knock, the wooden door creaks open.

The ancient one nods. “I’ve been expecting
you.” The dark chamber is filled with dozens
of geometric objects: spheres, cubes, pyra-
mids; all spinning and changing color. “The
road to real-time 3D can have a treacherous
topology, my young apprentice,” he warns.
“But I have faith in you.”

Welcome to the Topographic Apprentice.
The goal of this column is to provide a
painless introduction to real-time 3D
programming for games and other appli-
cations. I (otherwise known as “the ancient
one”) will make the assumption that you
are a REALbasic beginner and have never
worked with real-time 3D before.

A Bit of History
When I started to use REALbasic to build

my spacecraft simulator, A-OK! The Wings
of Mercury, I had no idea how I would
handle the requirement for real-time 3D
graphics. After trying an as-yet-unreleased
plugin and struggling to work directly with
the OpenGL libraries, I discovered Rb3D, a
plugin that was written by REAL Software
developer Joe Strout.

While Rb3D had (and still has) limi-
tations, it was the fastest and easiest
way to create real-time 3D applications
with REALbasic. A small but active user
community rallied around Rb3D and
REAL Software decided to make it an
integrated feature with the release of
REALbasic 3.5.

Rb3D Architecture
Rb3D is not a stand-alone 3D engine,

but a programming interface (API) that
runs on top of several 3D technologies.
Under Rb3D is Quesa, which is an open-
source version of Apple’s now-defunct 3D
engine, QuickDraw 3D (QD3D). Under
Quesa is OpenGL, a low-level 3D engine.
Rb3D objects, methods, and properties
are mapped to equivalent Quesa objects.
Quesa handles a lot of the organization,
math, and other high-level issues associ-
ated with real-time 3D and then calls the
appropriate routines to actually draw the
scene. Quesa can draw using a variety of
rendering engines, but the most common
one is based on OpenGL. Unlike Quesa,
QD3D handles both the high-level functions
and low-level drawing routines (drawing
is via RAVE), so nothing else is required
(see Figure 1).

In order to use Rb3D, you will need
one of two sets of software libraries. Even
though Apple has decided not to support
QD3D, it is actually the best option for
Mac OS Classic. With QD3D nothing else
is required. QD3D comes with QuickTime
and can be installed by doing a Full or
Custom QuickTime 5 install.

Unfortunately, QD3D does not work
on OS X and does not provide support for
hardware accelerator boards on Windows.
Quesa is a call-by-call replacement for
QD3D that runs on Mac OS and Windows
(and other platforms as well). It works, but
has not been optimized yet, so it is slower
than QD3D. However, it is the future, so
drop a line to the Quesa folks and let them
know that it is important to you.

Because Quesa doesn’t handle drawing,
you need the latest version of OpenGL which
is available from Apple. Note that at the
time of this writing, there is a serious bug
in OS X concerning OpenGL and threads. If

you use Rb3D within a REALbasic thread,
it causes a crash. This has been traced to
the OpenGL/OS X combination.

The good news is that, since both Quesa
and OpenGL are open source, they are
unlikely to be orphaned. Additionally,
even if a different rendering engine (e.g.
Microsoft’s Direct3D) is needed, Quesa can
make use of that with no changes required
to either REALbasic or your code.

Rb3D Components
Rb3D contains five classes and one

control. If you are familiar with REALbasic,
you’ll feel right at home with the syntax.

Right out of the box, Rb3D does not
have the large feature set of commercial
3D engines. However, with additional
REALbasic programming, more deluxe
features like a particle generation system
(great for smoke and explosions) can be
added. In fact, there will be some feature
articles right here in REALbasic Developer
over the coming year that will discuss the
advanced techniques you’ll need to turbo-
charge Rb3D!

Rb3DSpace
The basic control of Rb3D is called

Rb3DSpace. It exists on the REALbasic
Controls Palette (called the Tools Palette
prior to Rb 4.5) and is dragged on to the
window of your choice, as you would the
canvas control. An Rb3DSpace functions as
a window that your 3D world will be drawn
into and also provides basic camera, light,
and environment controls.

Initial Properties
All of Rb3DSpace’s Initial Properties

can be set in the IDE or under program
control. Note: properties marked with an
asterix (*) are new to RB 4.5.

The Topographic Apprentice
by Joe Nastasi

Welcome
Three-dimensional graphics for everyone

Joe Nastasi is the developer of a space-
craft simulator, A-OK! The Wings

of Mercury, created with REALbasic.
Joe, who has been a programmer since
1977, has been a full-time REALbasic
consultant since version 1.0.

38 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 39

Hither and Yon - These properties define
how close and how far away an object can
be from the “camera” inside Rb3DSpace
and still be visible. You can save lots of
processing time by making this range as
small as possible for your application. More
importantly, Hither and Yon affect rendering
quality; if the yon/hither ratio is too large,
you get unwanted visual effects.

FieldOfView - This property defines the
“camera” lens. A lower value will narrow
the viewable field, acting like a telephoto
lens. Conversely, a larger value will create
a larger viewable field, simulating a wide-
angle lens.

SkyColor - This property allows you to
set the background color for this particular
Rb3DSpace. This is sufficient for simple
games and object editor applications.

AmbientLight and AmbientColor* -
These properties set the intensity and
color of the global non-directional lighting
source.

FloodLight, FloodDirection*, and
FloodColor* - These properties set the
intensity, direction, and color of the global
directional light source. Like the Sun, the
FloodLight is an infinitely strong light
source that is infinitely far away.

FogVisible and FogStart - These prop-
erties toggle the fog effect on and off, and
define how far away from the camera the fog
will start. The fog gets progressively thicker
until Yon, where it is completely opaque.

Wireframe - This is a boolean property
that allows you to toggle how the models
get rendered by Rb3DSpace: shaded or
wireframe. Wireframe is sometimes useful
for a 3D object editor or to create a “Sci
Fi” 3D look.

DebugCube - This boolean property
creates a background with all the axes
marked. When you move objects or rotate
your Rb3DSpace camera, you can see exactly
what section of the coordinate grid you are
pointing at. Note: this feature only works
within the IDE, not built apps.

Object Properties
Rb3DSpace has a Camera, Background,

and Object property associated with it.
These three items are special-
ized versions of Rb3DSpace’s
core classes, Object3D and
Group3D.

Camera - This object can be
positioned and rotated, which
affects what you see within
Rb3DSpace. There is only one
Camera for each Rb3DSpace
in your application. In addition
to position and orientation, the

Camera is affected by the Hither, Yon, and
FieldOfView properties.

Object - This property is basically a group
to which you can add objects. Every object
that you append to Rb3DSpace’s Object
property will be visible in that Rb3DSpace,
provided that the object’s Visible flag is
true and it is in the Rb3DSpace’s camera’s
field of view.

Background - This object works exactly
like the Object property except for two differ-
ences: the Ambient and FloodLights do not
affect any object in the Background group
and the Background’s position relative to
the camera is fixed. These characteristics
are useful for things like a sky box; you don’t
want shading on air, nor do you want the
camera to go through your sky!

Events
Rb3DSpace can handle all the usual

events directly. MouseUp, MouseDrag,
MouseDown, MouseEnter, and MouseExit
can be used to select and move objects or as
a way of implementing camera movement.
The Open and Close events can handle the
initial loading of objects and any cleanup
when an Rb3DSpace is closed.

Methods
Three methods are associated with an

Rb3DSpace, two of which are typically called
from a MouseUp or MouseDown event.

FindObject - This method takes an X,Y
coordinate within an Rb3DSpace and
returns any Object3D that lies on that point.

In a shooting game this method can be used
to verify if a target has been hit.

FindPoint - This method is similar to
FindObject: pass it an X,Y coordinate and it
will return the equivalent 3D point. Useful
for 3D editors as you can know the 3D posi-
tion the user is pointing to.

Update - This method redraws an
Rb3DSpace without erasing or triggering
a Refresh event. This is what you call to
update a change you’ve made to the 3D
environment.

Vector3D Class
How does one know where an object is

in a 3D world? The Vector3D class contains
that information. You can assign it any 3D
location by setting its X, Y, and Z properties.
Other Rb3D classes use the Vector3D class
to define their position in 3D space or their
vector. I’ll explain this in the future.

Quaternion Class
Which way is an object facing? A

Quaternion is a way of representing an
object’s orientation. There are other
ways of representing orientation: matrix,
Euler angles, etc., but the quaternion is the
most stable. As with Vector3D, other Rb3D
classes inherit the Quaternion class.

Object3D Class
Object3D is the core class that most of

Rb3D is built upon. As stated before, an
Object3D has a Vector3D (the Position
property) and a Quaternion (the Orientation
property) associated with it. Other properi-
ties allow you to scale, control visibility,
etc. Several methods are provided to load
a model, rotate, move the object, etc.

Group3D Class
The next Rb3D class is Group3D. As the

name suggests, this class allows you to treat
a whole bunch of Object3D classes as one.
Since it is a sub-class of Object3D, you can
do all the same things to an entire Group3D
as you can to one individual Object3D. You
can load parts of a car (wheels - remember
to clone three of them, body, etc.) sepa-
rately, then load them all into a Group3D

that represents the entire car.
You can then move or rotate the
entire car by moving or rotating
the Group3D.

Light3D Class
At the time of this writing,

Real Software was developing
the Light3D class for inclusion
with REALbasic 4.5. This class
creates one of two types of lights

Rb3D

Quesa

OpenGL

QuickDraw 3D

High Level Functions
&

Low Level Drawing
(drawing via RAVE)

Low Level Drawing

High Level Functions

Translates REALbasic
syntax to Quesa/QD3D

Rb3D
Translates REALbasic
syntax to Quesa/QD3D

Figure 1: Rb3D Architecture

Continued on page 48

Rb3D Space

Group3D Light3D

Object3D Vector3D Quaternion

Figure 2: Rb3D Classes

40 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 41

Thank you for coming to
this staff meeting. We

don’t have a lot of time, so
I’ll get right to the point.

Our marketing depart-
ment has come up with
a product they want us
to design and build from
scratch, and management
has given us only six days
to do it. In a nutshell, this
new product helps devel-
opers release software by
automatically generating
the various documents usually found in a
release, such as a readme, a user’s guide, a
web page describing the software, and an
email announcing the software to mailing
lists. These documents all share informa-
tion about the software being released.
For example, the name of the product, the
company name, copyright information, and
a brief description of the product are some
of information you might find on the docu-
ments included in a software release. It is
a tedious and time-consuming job to keep
this information up-to-date in all of the
documentation for every release. Our new
product solves this problem by gathering
and maintaining release-related informa-
tion and using that information to generate
release documents from templates. We are
calling this new product ShipIt!.

Let us quickly go over our marketing
requirements. ShipIt! must enable the user

to enter information about the product to
be released. This information must include
the name of the software being released,
the name of the developers, the company
name, copyright information, and a short
description. ShipIt! must provide templates
for the documents it generates, and allow
the user to edit these templates. Each
template is used to generate one docu-
ment by substituting release information
into user-specified fields. ShipIt! must be
able to save the release information and
templates as a document file that can be
opened and reused. Standard UI elements
such as unique icons and an about box
should be implemented, as well as the
ability to run under Mac OS 8, 9, and X.
A Windows version of ShipIt! is highly
desirable, but not required. All versions
of ShipIt! should have the look and feel of
the platform on which they are running. In
other words, a Mac OS 8 version of ShipIt!
should look like a Mac OS 8 application,
and a Windows version of ShipIt!, if there
is to be one, should look like a Windows
application.

The first order of business is choosing
our development tool. We need a tool that
is fast and easy to use, but powerful enough
to finish the job. This tool must be able

to build versions of ShipIt! that will run
under older versions of the Mac OS (OS
8 and OS 9) as well as Mac OS X. A tool
that can also build a Windows version of
ShipIt! is preferred, and all the versions
must be built from one set of code. We
don’t have enough time to write different
versions of ShipIt! for each of our target
platforms. After considering a number of
development environments, we have come
to the conclusion that REALbasic by REAL
Software Inc. is the best tool for the job.
It meets all of our requirements, and it’s
fun to use.

Before we build ShipIt! we must design
it. A good design, taking into account our
marketing requirements, is essential in
creating a useful application. The first
marketing requirement is that ShipIt!
gather release-related information from
the user. A simple form could satisfy that
requirement, with fields for each piece of
information we have decided will be needed
in our templates. This approach assumes
we have correctly anticipated every piece of
information about a release that any user
might want. Instead of a form, a two-
column list would be more flexible. Each
row in the list would contain a template
field. The first column would contain the

From Scratch
by William Leshner

Day 1: The Mission
Designing and building a complete application from scratch

William Leshner has been program-
ming for twenty years and

programming Macs for ten. He has
spent a good deal of the last several
years working in REALbasic and has
come to the conclusion that REALbasic
is the best development environment
available anywhere.

Figure 1: A product information ListBox.

40 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 41

name of the field, so that we can refer to
it in our templates. The second column
would contain the replacement text, which
will be substituted in our templates. Such a
list is easy to implement with REALbasic’s
ListBox control. See Figure 1 for what the
ListBox might look like.

Our next requirement is that ShipIt!
provide templates for the release docu-
ments it generates and that these templates
be editable so that a user can customize
them for each software product. First we
should consider what a template is and
then we should figure out how to let the
user edit one. Let us consider a typical
release document: the readme. A snippet
of a readme is shown in Figure 2.

The parts of this readme that we might
want to share with other release docu-
ments are the product’s name, version
number, copyright, and description.
Each of these pieces of information
should become substitution variables in
a readme template. These variables will tell
ShipIt! how to perform a substitution by
naming the information the user entered
in the product information ListBox we
discussed previously. We just need to tell
ShipIt! which pieces of text in a template
are variables so that it knows what to substi-
tute where. Our convention will be to put
template variables between ‘#’ characters.
For example, a variable for the name of a
product might appear as “#product#” in our
templates, and “product” will also appear as
the name of one of the rows in our product
information ListBox (see Figure 1). Figure
3 shows how we have made a template out
of the readme snippet.

A release will require a number of
templates like the readme snippet in
Figure 3. One of our requirements is that
the user be able to edit them, which can be
satisfied with a ListBox and an EditField.
The user will select templates with the
ListBox and edit the selected template

with the EditField. Figure 4 shows how
that might look.

ShipIt! now has a total of three UI
elements: a product information ListBox,
a templates ListBox, and an EditField for
editing one template. The templates
ListBox and EditField will be together in
one window, but where will the product
information ListBox be? We could put it in
a separate window, but a better approach
is a single window with a TabPanel control.
The product information ListBox would be
under one tab, and the templates ListBox
and EditField would be together under
another tab. This design keeps each ShipIt!
document in one window, which simplifies
the UI and reduces window clutter.

The last ShipIt! requirement that we
need to consider is the ability to save and
reuse ShipIt! documents. Manipulating
files in REALbasic is simple, but we need
to design the ShipIt! file format. We could
just invent a proprietary binary format, but
unless we design it very carefully a propri-
etary format could be very inflexible. If,
in a future version of ShipIt!, we need to
change the file format, we might not be
able to open new files in older versions of
ShipIt!. A better approach is to design a

file format in XML. XML is easily extended
and older versions of ShipIt! will simply
ignore tags and attributes in the document
it doesn’t understand. To parse our XML
files we will need an XML parser. Although
we could use a third-party XML parser,
we propose to write a very simple one
that will handle just enough XML to read
ShipIt! files. We will cover the details of
the ShipIt! XML tags and the parser in a
future column.

Our remaining marketing requirements
are solved by our selection of REALbasic
as our development tool. REALbasic will
produce working applications with a plat-
form-correct look-and-feel for all of our
target platforms. An about box and menus
are easy to construct and the only other

consideration is icons. We will discuss
these issues in the meetings that we will
hold in the days ahead.

That pretty much wraps things up for
today’s meeting. Next time we will begin
to layout and code the ShipIt! application
in REALbasic, starting with the main
window and its two tabs. We will add the
ListBoxes and EditField and write the code
to manipulate them.

Figure 2: A readme snippet.

Figure 3 : A template for the
readme snippet in Figure 1.

Figure 4: Templates ListBox and EditField.

RBD# 1012

42 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 43

AppleScript has always been one of the
best-kept secrets of the Macintosh

world. Most users know it exists but
haven’t taken the steps to harness its
powers. REALbasic does a very good job
at integrating AppleScript technology into
its architecture.

AppleScript allows your application to
control, or be controlled, by other appli-
cations. With proper programming, this
interaction between programs can work
across a network, even the internet. Letting
other applications control a REALbasic
program is done using AppleEvents and
is a topic for another article.

Controlling other programs can be
accomplished in two different ways. The
controlling program can create and send
AppleEvents to a target program, or the
controlling program can call a compiled
AppleScript “program.” The former is more
powerful but more difficult to program;
the latter method is limited but easy to
program. We will concentrate on the latter
method with this column.

A program can utilize three different
types of scripts. The first type are simple,
where the script simply accomplishes a
task, like Emptying the Trash.

tell application "Finder"

 empty trash

end tell

Save this code as a compiled AppleScript
and drag it into your project window in
RB. The name of the script now becomes a
subroutine that can be called in code. (Hint:
Double click the script icon in the project
window to open ScriptEditor.)

When this subroutine is called the script
will be executed and the trash emptied.
When the program is compiled, the script
is incorporated into the application so the
actual script file doesn’t have to be distrib-
uted with the application.

The second type of script can return a
value to your program. iTunes will serve
as an excellent target application.

Here is a script that will make iTunes
return a list of playlist names.

tell application "iTunes"

 set PlayListList to the name of every playlist

end tell

return PlayListList

A script, when called by REALbasic,
always returns a string regardless of the
data type that would have been passed back
by the actual script. This script is called as
any other function would be called.

Sub Action()

 Dim PlayLists as string

 PlayLists = NamesOfPlaylists()

End Sub

The returned string is a list of playlist
names separated by commas. It can then
be parsed using the CountFields and
NthField functions. The problem is
that if any of the playlist names contain a
comma, the returned list will be useless.
So the script code needs to be modified to
return a list with a different delimiter.

tell application “iTunes”

 set PlayListList to the name of every playlist

end tell

set WhatImReturning to “”

repeat with i from 1 to (count of items in
PlayListList) - 1

 set WhatImReturning to WhatImReturning &item
i of PlayListList &“|”

end repeat

set WhatImReturning to WhatImReturning &last
item of PlayListList

return WhatImReturning

Now the returned string’s playlist names
are delimited by “pipe” symbols.

In the last type of script, a value will
be passed to the script and then a string
returned. Here is the code that will return
a list of tracks in a playlist.

on run {playlistname}

 tell application "iTunes"

 set TrackNamesList to the name of every
track of playlist playlistname

 end tell

 set WhatImReturning to ""

 repeat with i from 1 to (count of items in
TrackNamesList) - 1

 set WhatImReturning to WhatImReturning &
item i of TrackNamesList &"|"

 end repeat

 set WhatImReturning to WhatImReturning &last
item of TrackNamesList

 return WhatImReturning

end run

The example program (AppleScript
Demo.rb) utilizes these scripts to popu-
late a ListBox with the playlist names, and
when a playlist is chosen it will populate
the other list box with the track names via
the other script. I leave it as an exercise for
the reader to write a script and the code to
make iTunes play the selected track.

AppleScript is a somewhat overlooked
tool that can be very powerful in solving
many problems and helping extend the
functionality of REALbasic.

Applescr ip t
by Dean Davis

Revealing AppleScript
Controlling other applications using AppleScripts

Dean Davis is the author of the share-
ware program WeatherManX and

a huge AppleScript enthusiast.

RBD# 1013

42 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 43

Ins tant Cocoa
by Colin Cornaby

The History of Cocoa
Cocoa for REALbasic programmers

When Apple released Mac OS X in
March last year they did something

remarkable. Included with the operating
system (or available for a free download)
were powerful development tools that rival
the costly commercial C++ development
tools of other platforms. This opened many
new possibilities not only for companies
wanting to port existing code to OS X, but
also for shareware and freeware developers,
and hobbyists. Now, amateurs and smaller
developers could try programming without
paying for development tools. Not only that,
but Cocoa is one of the easiest varieties of
C. It is a powerful Mac OS X-only language
that allows programmers to use advanced
portions of OS X.

In this column I’ll be exploring Cocoa
from a REALbasic developer’s standpoint.
I will also highlight the main differences
between Cocoa and REALBasic. I’ll be
assuming that you are an intermediate
RB programmer, and you know the basic
vocabulary of RB (such as a method, a class,
an argument, etc). I believe that having
a firm understanding of RB is important
before trying Cocoa, as RB and Cocoa are
built on similar concepts. I’ll assume,
however, that you know nothing about
Cocoa, Mac OS X, or C.

You might get the feeling from my
introduction that Apple invented Cocoa
recently. In fact, they didn’t. Cocoa is
probably about as old as that LC II most
of us have wasting away somewhere. When
Steve Jobs was exiled from Apple back in
the 80’s he took some of his engineers and
founded NeXT, a company dedicated to

creating powerful new technology. They
built futuristic machines called NeXT
Cubes and a new operating system called
NeXTStep, which shared the Cube’s spiffy
technology. It was based on UNIX and was
a wonder of its time. NeXT Cubes were
powered by a new variation of C++, which
was “object oriented.” Objects can send
and receive messages as you’ve probably
found in REALBasic. NeXT’s new variation
of C++ made programming a lot easier.
NeXT programmers quickly and easily
built interfaces, cutting development
time down to a fraction of what it had
been. This new language became known
as Object-Oriented C.

Unfortunately, the NeXT cubes faced
the same fate as their more recent incar-
nation, the G4 Cube. Too overpriced and
overpowered for the average home user,
NeXT Cubes only caught on in high tech
labs and businesses. NeXT cut back their
hardware division and began pushing
NeXTStep as an alternative OS for (ironi-
cally) x86 based PCs.

NeXT continued with software devel-
opment and became fairly popular with
developers for its advanced program-
ming language, but still never caught on
in a market that was built for Windows.
However, it was around this time that
Apple was looking for a new OS. Apple
needed a product that would compete

with Microsoft’s new Windows NT OS
and saw NeXTStep as exactly what it
needed. Apple bought NeXT and began
the process of bringing the code over to
the Mac. Apple began to experiment with
NeXT’s programming language (now
dubbed Cocoa). They actually ported
Cocoa so it could run in Windows along
with other Windows applications.

Apple also developed Carbon. Carbon
was simply a version of OS 9’s libraries
that ran under Mac OS X. Because Cocoa
was so different from other programming
languages on the Mac, Apple realized that
developers could not easily port their code
from OS 9. Carbon is the version of C++
that developers use to port projects from
“Classic” Mac OS to Mac OS X. Many
developers still write code in Carbon so
that both OS 9 and OS X users can run their
programs (especially games). REALbasic
and programs compiled in REALbasic are
also Carbon.

The history of OS X is important because
the development tools have not really
changed. In fact, there are even varia-
tions of NeXTStep other than OS X that
exist on other platforms. One example is
OpenStep; an open source project with an
OS that is heavily based on NeXTStep and
Cocoa. Apple had an early version of OS X
that ran on PCs called Rhapsody.

So should you expand on the familiar
surroundings of REALBasic and venture
into the realm known as Cocoa? Read this
column. Every issue, I will be exploring
Cocoa from the perspective of an RB user.

Next issue I’ll compare RB and Cocoa side
by side. We’ll compare interface elements
and general design principals. After I show
you the differences and advantages of RB
and Cocoa, we’ll begin doing some coding
so you can decide whether or not Cocoa is
something you want to learn.

Colin Cornaby is an OS X developer.
Current projects include “Duality,”

a theme changer for Mac OS X, written
in REALbasic.

RBD# 1014

44 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 45

Aqua, the interface component of Mac
OS X, obviously has a lot of differences

from Platinum, its OS 9 predecessor. Some
of them are obvious changes: the Dock, the
Finder windows, the Apple menu. But there
are quite a few more subtle things that are
new, many of which are a result of some
fundamental interface changes.

One place where Aqua has introduced
changes is in the field of dialog boxes
— those helpful windows that appear when
the application needs to communicate with
the user. Dialogs designed in Platinum will
almost always work perfectly when ported
to Aqua, but this approach ignores a lot of
design guidelines established for the new OS,
and in some cases these dialogs may cause
confusion for the user. Taking the extra steps
to redesign the dialogs can help avoid this
confusion and give your OS X application
a very professional, polished look.

Some Things Never Change
Before we talk about the changes in

the new interface, let’s cover some of the
aspects of dialog box design that apply no
matter what system you’re using.

Language. Text in dialog boxes should
always be non-threatening and helpful.
“Don’t close the window until you are
finished entering your preferences!” is
short and to the point, but something
like “Closing the window now will cause
your preferences to be lost. Are you sure
you want to continue?” makes the user

feel less like they’ve made
a mistake and more like the
computer is helping them
from doing something they
didn’t mean to do. Buttons
should be clearly labelled,
and, if the dialog is asking a
question, the buttons should
give possible answers to that
question. This means “Yes”
and “No” are often preferable
to “OK” and “Cancel.” Aqua interface stan-
dards appear to encourage longer texts in
buttons — like “No, don’t close the window”
— than Platinum standards did.

Fonts. Dialog boxes should always use
the appropriate system font — REALbasic
does this automatically if you enter
“System” as the font name. To be honest,
there are a couple of small changes: Aqua
dialogs should use 13-point text instead
of the 12-point text used in Platinum, and
Aqua alert boxes (small, one- or two-line
messages used for warning or alerting the
user) should use the bold version of the
system font. But that’s it for variety: don’t
use a different font or size just because you
think it looks good.

Arrangement of controls. Good dialog
boxes are designed to be read from top-left
to bottom-right. For example, in an alert
box the icon is in the top left to catch the
user’s attention. The message appears to the
right of this icon, and the buttons (which
represent the user’s response) appear in the
lower right, with the most probable choice
appearing to the farthest right.

Control spacing. While the numbers are
different for each operating system, both
Platinum and Aqua have specific pixel
measurements for placement of buttons,
icons, and text. You’ll find them specified
in detail in the Dialogs sections of the Aqua
Human Interface Guidelines and the Mac

OS 8 Human Interface Guidelines, both of
which are available from Apple’s web site
(http://developer.apple.com/techpubs/
macos8/HumanInterfaceToolbox/
HumanInterfaceGuide/humaninterfac
eguide.html). The “snap-to” guidelines
that REALbasic provides are a good start,
but they don’t cover everything, such as
distances in between buttons and other
objects.

Let’s take a look now at a few inter-
face guidelines that have been changed
for Aqua.

Icons
Both Platinum and Aqua alert boxes

display an icon in the upper left-hand
corner of the window, but the two inter-
faces have different criteria for choosing
the icon.

In Platinum, there are three icons which
can be used: the Note icon, the Caution icon,
and the Stop icon. The Note icon is used
for messages to the user that do not involve
any risk of data loss (see Figure 1).

The Caution icon is used to warn the user
of possible data loss (see Figure 2).

The Stop icon is used when an action
cannot be completed due to a problem
(see Figure 3).

These icons can be displayed by
creating a Canvas control, 32 pixels
high and 32 pixels wide, and using the

Interface Design
by Toby Rush

Dealing with Dialogs in Aqua
The low-down on designing dialog boxes for Mac OS X

Toby Rush, a music instructor,
consultant, and freelance software

and web designer, has been using
REALbasic since before version 1.0. His
current projects include The Interface
Mafia (www.interfacemafia.org) and
his newborn son.

Figure 1: The Note Icon

44 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 45

graphic.drawNoteIcon, graphic.draw
CautionIcon or graphic.drawStopIcon
methods.

In Aqua, however, the rules are a little
bit different: because windows and dialogs
from different programs can be layered in
between one another it is important that a
dialog box indicate what program it belongs
to. To do this, the application’s icon itself
is used as the icon for the alert box. The
only exception to this is when the alert
box is warning about potential irrevers-
ible data loss; in this case, the caution icon
is used, with the application icon placed as
a small “badge” over the lower right part
of the icon:

Unfortunately, REALbasic doesn’t yet
have a built-in way to display this caution
icon. It does exist deep within the OS X
System Library, but getting at it will take
some extra code (see “The Aqua Caution
Icon” sidebar).

Window Types
In Platinum, we have five different types

of windows which dialogs can use:
Modal. The modal dialog has no titlebar,

so it can’t be moved around the screen. It
puts the user in a mode (hence the name),
meaning the user can’t do anything else in
the program until he or she dismisses the
dialog box. Use of this window is generally
discouraged for almost all cases.

Moveable modal. This window is still
modal — the user has to dismiss the dialog
before doing anything else in the program
— but it has a title bar and can be moved
around the screen. When your program
requires a modal dialog (for a Preferences
window or About box, perhaps), this is the
one to use.

Alert Boxes, moveable
and stationary. These
two dialog box types are
just like the Modal and
Moveable Modal varieties,
except that the borders
and title bar have red
highlights. They should
be used for alert boxes,
regardless of which icon
is being used. To create
one of these in REALbasic,

simply set the window’s MacProcID to 1044
(Stationary) or 1045 (Moveable).

Modeless. This type of dialog doesn’t
put the user in a mode; that is, the user
can switch to another window and do
other work without closing the dialog
box. Dialog boxes of this type are rare but
they are gaining popularity — seasoned
interface designers like them because they
allow the user more flexibility. To create
a modeless dialog in REALbasic, set the
window’s Frame parameter to “Document
Window” and make sure the CloseBox item
is not checked.

In Aqua, the number of dialog types has
been reduced to three:

Modeless. This type is just like its coun-
terpart in Platinum, and it’s still the dialog
type of choice when appropriate.

Application Modal. This type of dialog
is just like the Moveable Modal dialog box
in Platinum, but it’s only used when the
alert doesn’t pertain to a specific docu-
ment window. For example, the Open File
dialog box isn’t connected to any particular
document (since it can be displayed when
no documents are open), while the Save
File dialog box is connected to the docu-
ment being saved. In this case, the Open
File dialog box should be an Application
Modal type.

If you use an Application Modal dialog
and include a title in the title bar (like
“Open”), it’s a good idea to precede it
with the name of your application (like
“SurfWriter: Open”) so it’s apparent to
which application the window belongs.

Document Modal. This type of dialog is
a new addition; it is attached to an existing
window and appears to emerge from just
under the titlebar of the
existing window. This type
of dialog is also known as
a sheet, and unfortunately
REALbasic applications
cannot properly take advan-
tage of them yet (windows
set to MacProcID 1088 will
appear to be sheets, but there
are some limitations to using
this method).

Pay Attention to the Details
There are a few other small differences

between Platinum and Aqua dialog box
guidelines, and it’s well worth reading the
appropriate Human Interface Guidelines
documents published by Apple. Because OS
X is still pretty new, many of these subtle
differences are ignored by designers rushing
to get their applications compiled for the
new system. However, the differences add
a level of professionalism and style that
is well worth the effort. If you make your
program feel at home in Aqua, your users
will feel at home with your program.

Figure 3: The Stop Icon

Figure 2: The Caution Icon

The OS X Caution Icon
In OS 9, icons like the alert box

caution icon are easily available
as system resources which can be
retrieved using app.resourceFork
(although this is unnecessary thanks
to the graphic.drawCautionIcon
method). In OS X, however, it’s
not quite as easy. If you’re up for a
challenge, here’s how to find the file
that contains the OS X caution icon.
Starting from the root level of your
OS X startup disk, navigate through
the following folders:

System:Library:Frameworks:
Carbon.framework:Versions:A:
Frameworks:HIToolbox.framework:
Versions:A:Resources

Inside that last folder, you’ll find
a file called “HIToolbox.rsrc”. A
great many OS X icons are hidden
in there, stored in ‘icns’ format. In
order to use any of the images, you’ll
have to convert that ‘icns’ data into
something usable by REALbasic.
That’s outside the scope of this article,
but if you have a way to do it, e-mail
me at trush@rbdeveloper.com and
I’ll mention the solution in a future
article. (Thanks to ResExcellence for
the location of this resource file!)

RBD# 1015

46 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 47

This article assumes that you already
have covered the basics of regular

expressions (RegExes), and have read Matt
Neuburg’s introduction on page 24.

Just don’t bother
A discussion on one of the REALbasic

discussion lists was how to suppress extra
spaces in a text. The pattern that will come
up immediately to most people is [\t]+,
to be replaced with a single space. It was
argued that the correct pattern should be
[\t][\t]+, since RB’s RegEx engine
should start matching only when there are
at least two tabs or spaces. However, the
speed difference on average-sized texts was
negligible (applied to this article [\t][\t
]+ is six times faster than [\t]+).

While a fascinating discussion, it’s
academic since a) we’re talking microsec-
onds or milliseconds, not seconds, and b)
another fellow came up with an example
using replaceAll, which was faster. I made
it even faster by changing inStr to inStrB,
and by adding a line of code to first remove
odd-numbers of spaces.

Compiled, the subroutine executes in 3.8
milliseconds (5.5 milliseconds without the
two optimizations), versus 18+ milliseconds
with the regular expression engine. In this
case, the use of regular expressions is actu-
ally slower, so they shouldn’t be used.

In the sample program provided on
RBD’s website (see page 4 for downloading
instructions), you can see that the longer
the text, the more efficient ReplaceAll
becomes (actually ReplaceAll is efficient,

it is just that the initialization overhead
makes it slow on small chunks of text).

Bionic Vision... Not!
One common assumption made by people

who have played with regular expressions
is that, being powerful and cryptic tools,
they have some kind of bionic vision that
gives them the capacity to “see” all matches
at once and apply any kind of transforma-
tion to the source, from case adjustment to
styling. One of the factors that contributes
to this confusion is the .ReplaceAllMatches
option, which does not, on the user/
developer side, involve any looping. Snap
your fingers and Bobby the RegEx will do
it. Not quite so. The .ReplaceAllMatches is
just one facility of the regular expression
engine that does the looping for you. But
it does need to loop.

So what if I want to have all my matches
neatly tucked away in an array or something
similar? Roll up your sleeves, m’dear; it’s
time to work. It doesn’t mean you will be
doing it all the time: this is a good example
of a COUP (code once, use plenty). Subclass
a regEx and provide a searchAll method.
In the project window, add a class and
subclass it from regEx. Name it wrappe-
dRegex, for instance. Add a SearchAll
method as follows:

wrappedRegex.searchAll:
Sub searchAll(source as string, byref a() as

string, subEx as integer)

 dim m as regexMatch

 dim s as string

 dim i as integer

 s = source

 redim a(-1)

 m = me.search(s)

 while m <> nil

 a.append m.subExpressionString(subEx)

 i=len(m.subExpressionString(0))+m.subExpres
sionStart(0)

 m = me.search(s,i)

 wend

End Sub

Now, let’s test that. Imagine you want
to catch the last word of each sentence in
a text. Here’s what you’d do:

 dim r as wrappedRegex

 dim result(-1) as string

 dim i, j as integer

 r = new wrappedRegex // Our new subsclass!

 r.options.caseSensitive = false

 r.searchPattern=" ([-a-zA-Z’]+)[.!?]([\s\
r]|$)"

// the $ sign is to make sure you catch

// the last word of the last sentence

// which may not be followed by anything

// Note that result is passed as byRef and

// its value may change

 r.searchAll(editField1.text, result, 1)

 j = ubound(result)

 listBox1.deleteAllRows

 for i = 0 to j

 listBox1.addrow result(i)

 next

This is a bare-bones RegEx; don’t expect
it to catch everything. The [\s\r] at the
end of the searchPattern prevents the
RegEx engine from matching things like
listBox1.deleteAllRows, for instance.
Cosmetic, really.
SubEx enables the user to chose what

will be stored in the array, since we often
care only about a piece of the match, and
not the whole match.

Beyond the Limits
by Didier Barbas

Regular Expressions Overdrive
Taking regular expressions to the next level

Didier has been a dilettante
programmer and linguist for

more than 20 years. Unusual for a
Frenchman, he speaks 11 languages,
including Korean and PowerPC
machine-language.

46 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 47

Another frequent issue connected to this
bionic-vision problem is applying versatile
changes to a source with regular expres-
sions, like changing the case of matches.
To the beginner, it appears to be one single
issue, whereas in reality it is an array of 26
possible issues. You have to keep in mind
that regular expressions don’t describe
things; they describe the way things may
look under certain conditions. So, matching
words that start with a lower-case letter
is easy, but asking the regular expression
engine to then capitalize these letters
doesn’t make sense.

Looping. Again and again.
Since there are 26 letters (at least in

English), we can loop through them and
change each lowercase to an uppercase
letter. The code would look like this:

 dim i As integer

 dim r As regEx

 dim m As regExMatch

 dim a, b, source As string

 dim t1, t2 As double

 source = editField1.text // Our source text

 t1 = microseconds

 r = new regEx

 r.options.CaseSensitive = true

 r.options.ReplaceAllMatches = true

 For i = 1 to 26

 a = chr(96+i) // a-z = ascii 97 to 122

 b = chr(64+i) // A-Z = ascii 65 to 90

 r.SearchPattern="\b"+a+"([a-z]*)\b"

 r.replacementPattern=b+"\1"

 m = r.search(source)

 if m <> nil then

 source = r.replace(source)

 end if

 next

 t2 = microseconds

 editField1.text = source

 staticText1.text = format(t2-t1,"###,###")
+ " microseconds"

Originally, I had tried with a slightly
different version, using (\W|^) and (\W|$)
as word delimiters, but this proved to be
two to three times slower.

Styling
Many programs today provide syntax

coloring services, which makes editing
code much easier.

There are two ways of doing syntax
coloring: real-time or offline. Real-time
coloring is neat, but it doesn’t involve
regular expressions. Let’s start with off-line

coloring. For our example. we will colorize
all instances of certain words in a text.

Off-line syntax coloring:
 dim r as regex

 dim m As regexMatch

 dim c, c2 as color

 dim s, t As string

 dim i, j as integer

 c = rgb(0, 0, 200) // Matches to be blue

 r = new regex

 r.options.caseSensitive = false

 r.searchPattern="(\W|^)(\w+)(\W|$)"

 s = editField1.text // Our source text

 j = ubound(myList)

 m = r.search(s)

 while m <> nil

 t = m.subExpressionString(2) // that’s (\w+)

 for i = 0 to j

 if t = myList(i) then

 editField1.selStart =
m.subExpressionStart(2)

 editField1.selLength =
lenB(m.subExpressionString(2))

 editField1.selTextcolor = c

 exit

 end if

 next

 m = r.search(s, m.subExpressionStart(0) +
lenB(m.subExpressionString(0)))

 wend

Here again, there is no way we can avoid
looping or trust the grunt work to the RegEx
engine. However, applied on this article,
the process is quite slow. myList() is a
global array that contains the list of words
we are looking for; in this example a, the,
of. This list relates heavily to a dictionary

of keywords, like HTML or PHP keywords.
In the case of PHP, for instance, literal
strings (between double quotes) are set to
a different color for better discrimination.
Moreover, C-style comments (/* ... */) can
spread over several lines too. The problem
is that both comments and literal strings
also can contain keywords. The conflict
is solved by styling comments first, then
strings, and finally keywords, if these are
not already colored. Download the demo
project for the source code.

However, this is not really fast; it took
my Titanium PowerBook 1.8 seconds to
colorize a 3.5 KB PHP script (see example
project). And there is no no easy way to cut
down on processing time. Here again, we
have to look around for other tools to help
us achieve the task. In this case switching
from the standard editField to WasteField
will do the trick. WasteField, designed by
Marco Piovanelli and adapted for RB by
Doug Holton, has many more features than
the standard editField, among which are
two useful functions for syntax coloring:
findiIt and SetAttColor. With these tools
we will take a slightly different approach,
since findIt does not find patterns, but
words. Regular expressions will still be
used where patterns are needed. Again,
the source code is in the demo project.

This executes in around 60 milliseconds
flat, and almost a third of that is due to
the fact I have to back-pedal every time
there is a match on a keyword, for fear
there could be instances of this keyword
preceded by a $, i.e. variable names like
$date, which, while being legal, would be
seen by WasteField as the PHP keyword
date.

Here again, a combination of regular
expressions and something else did the
trick.

RBD# 1016

The Beyond1 demo
project, available on
the RBD website, lets
you test the various
code examples used in
this article and access
the full source code.

48 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 49

R E A L A D S

Mac OS PPC Mac OS 68k Mac OS Carbon Win32
TargetMacOS True True True False
TargetPPC True False True False
Target68k False True False False
TargetCarbon False False True False
TargetWin32 False False False True

Some Notes:
a) None of these constants can tell you if you are running on Mac OS X or not.
b) In some earlier REALbasic versions there was a constant TargetJava, but the Java compiler
was never released and this constant was removed.
c) You can define your own boolean constants in a module. For example:

 // The “then” after the boolean constant is ignored like everything else on the line.

 // This means that you can’t combine constants in an expression

 #If GermanVersion then

 msgbox “Guten Tag.”

 #endif

Table 1: Target Constants in REALbasic.

XCMDs und XFCNs
XCMDs and XFCNs are external func-

tions originally designed to extend Apple’s
Hypercard development environment. You
can use them in REALbasic applications
running on Mac OS Classic like this:

 #If targetwin32

 // can’t work on Windows

 #Else

 #If TargetCarbon

 // can’t work on Carbon

 #else

 CallMyXCMD

 #endif

 #endif

Colored Mouse Cursors
If you drag a resource file into your

project that contains a ‘CURS’ resource

(a black and white mouse cursor), RB will
import it and you can use it on Mac OS and
Windows. After compiling your applica-
tion, you can open your application’s file
using ResEdit and take a look at what ID
this ‘CURS’ resource is assigned. If you
add a ‘curs’ resource (a colored cursor,
note the capitalization) to your app using
a resource file it will be colored on Mac
but not on Windows.

Special chars
When REALbasic compiles for Windows

it will translate all char codes from Mac to
Windows. But some characters, like the
ellipsis (“...”), can’t be translated and will
result in a small rectangle on Windows.

 // Get a text file from the user.

 f = GetOpenFolderItem("text/plain")

 if f <> nil then

 // Create the storage for the FSSpec

 fsspec = NewMemoryBlock(70)

 if fsspec <> nil then

 // Store the result of f.name

 fname = f.name

 // Create the FSSpec

 err = FSMakeFSSpec(f.MacVRefNum, f.MacDirID,
fname, fsspec)

 end if

 end if

Note that I had to put the file name into
the fname variable, since the Name prop-
erty of the FolderItem class is actually a
function call, making it impossible to pass
f.name directly.

Accessing data from a MemoryBlock is
a very important part of calling Toolbox
routines. As an example, to get the file-
name from the FSSpec created above, you
need to look back at the definition for the
FSSpec data structure to determine where
the data you want is located. According
to the C or assembly language structure
definitions, the file name is found at offset
6 in the MemoryBlock. It can be accessed
as follows:

 dim fsspec as MemoryBlock

 dim filename as string

 fsspec = DoSomethingToGetAnFSSpec()

 filename = fsspec.PString(6)

These tips should give you a good start
using Declare statements in your own
programs. After some experimentation
and reading of Apple’s documentation (if
you haven’t already), you’ll be accessing the
power of Toolbox calls in no time!

Intel Focus
Continued from page 37

Advanced Techniques
Continued from page 31

RBD# 1017

RBD# 1007

that can be added to Rb3DSpace. This
gives you more control over lighting the
3D scene than using Rb3DSpace’s built-in
light sources.

The Next Step
In the next column, I’ll go over the 3D

Meta File (3DMF) format that Rb3D uses

to load 3D models and present techniques
for loading, placing, and viewing 3D objects.
I’ve provided a project, Rb3DSpace Demo,
that you can download from the RBD
website (see page 4 for instructions). It
allows you to experiment with Rb3DSpace’s
properties and see their affect on the
3D scene.

RESOURCES
Mac OS OpenGL Libraries: http://www.apple.com/opengl/

Windows OpenGL: http://www.opengl.org/users/downloads/
Quesa Libraries: http://www.quesa.org/info/download.html

Quesa Forum: http://www.quesa.org/quesa_forum.html
Rb3D FAQ: http://www.strout.net/info/coding/rb/

The Topographic Apprentice
Continued from page 39

RBD# 1011

48 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com 49

R E A L A D S

FOR SALE
Made with RB

Organize your programming life with
Z-Write, the non-linear word processor
for writers and creative types. Take
control over your text! Free trial at
http://www.z-write.com.
You can’t change the weather but you
can see what it is and what it’s going
to be with WeatherManX. Check it out
at http://www.weathermanx.com
midnite.liteman offers creative solu-
tions for your Mac. ideaSpiral, our
idea organizer, has received a great
deal of attention, and Reference
Worker is highly anticipated.
www.midnite-liteman.com

SERVICES
RB Consultant

Full-time REALbasic consultant (since
1.0) with over 20 years experience.
Let me create your entire project or
supply you with a needed class or
troubleshooting. Joseph Nastasi Pyramid
Designs http: //www.pyramiddesign.tv
732 458-3738

RB Websites
Need more REALbasic tutoring? Go to
REALbasic University every week at http://
www.applelinks.com/rbu/ —sponsored
by REALbasic Developer!
Read by Erick Tejkowski’s REALbasic
column on ResExcellence: http://
www.resexcellence.com/realbasic/

REALbasic Developer classified advertisements are a
great value! They start at just $0.15/byte (character).
(A typical four-line ad runs about $20 U.S.) The cost goes
down the more times you run the ad!

Purchase online at:

<http://www.rbdeveloper.com/classifieds.html>

http://www.ebutterfly.com
http://www.z-write.com
http://www.weathermanx.com
www.midnite-liteman.com
http: //www.pyramiddesign.tv
http://www.applelinks.com/rbu/
http://www.applelinks.com/rbu/
http://www.resexcellence.com/realbasic/
http://www.resexcellence.com/realbasic/
http://www.rbdeveloper.com/classifieds.html
http://www.einhugur.com

50 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

In REALchallenge, I’ll have contests
that will appeal to both beginners

and experienced users. These challenges
may consist of entire programs, games,
classes, or just algorithms. One issue I’ll
do a beginner challenge; the next may be
an intermediate or advanced challenge.
Regardless of difficulty level, each issue I
will present a new programming task and
give you a couple months to write, debug,
and submit your solution.

Your submission will be reviewed on the
following criteria: code style, user interface
(if applicable), features, and overall func-
tion. REALbasic Developer will choose
the best submission and I’ll feature it in a
future column. I may also show my own
solution to the task, and explain the logic
behind the code.

Winners will be presented in the
following categories: Most Efficient
Code, Best Interface (if applicable),
Coolest Feature, and Best Overall. Each
winner will receive a book of their choice,
courtesy of Peachpit Press (we’ll contact
you with a list of books to choose from),
and possibly other prizes as well!

This Month’s Challenge

Difficulty Level: Beginner
Your challenge for this month is to create

a simple rock/paper/scissors game with a
stellar interface. The emphasis is on the
interface, so focus on that but do not leave
out playability and features, as those are
almost as important! Also don’t forget,
quirky features will help your score, so
don’t be afraid to give it Internet play,

a scoring system, etc. Just make sure
that anything you add does not impede
the gameplay. The programming aspects
should be easy if you know how to play the
game. Rock/Paper/Scissors is a two-player
game where each player simultaneously
chooses a “weapon” — either rock, paper,
or scissors. See Figure 1 for “The Idiot’s
Guide to Rock/Paper/Scissors” which
provides the win/lose scenarios for each
possible combination.

The deadline for this challenge is
September 30th. Winners will be
announced in the December issue of
REALbasic Developer.

Submission Rules and
Requirements

When you feel your work is ready for
submission, check it for bugs, compile it,
and make sure it runs compiled. Make sure
you have not used any plugins, and that
any classes/modules are unprotected. All
code must be your own; you may not use
any 3rd party classes or modules. Save
your project as a REALbasic project file.
Place the source in a folder, and don’t
forget to include any necessary files such
as pictures, sounds, movies, resource files,

and cursors. Compress the folder in StuffIt
format (.sit) and email it to realchallenge@
rbdeveloper.com with the subject
“REALchallenge Submission August 2002.”
Make sure to include your name, company
(if applicable), mailing address (for sending
you your prize), and telephone number in
the email. Show the world your talent!

Copyright Agreement
By submitting your source code to us

you grant us the right to distribute your
source code to all of our print and internet
subscribers. This means printing your
project’s source code and/or screenshots
in REALbasic Developer or on the RBD
website. We may release your software in
either compiled or uncompiled form to our
subscribers at our discretion. REALbasic
Developer does not reserve any rights
to your code (you still own your code),
merely the right to distribute it. You will
always receive full credit as the author
and copyright holder. Readers of the
magazine are not permitted to use your
code in their own projects without your
written permission.

REALcha l lenge
by Sean Beach

Our First Challenge
Win fame and cool prizes!

Sean has been programming since he
was eleven and has used REALbasic

since version 1.0.

Rock Paper Scissors

Rock draw paper wins rock wins

Paper paper wins draw scissors wins

Scissors rock wins scissors wins draw

Figure 1: The Idiot’s Guide to Rock/Paper/Scissors

RBD# 1018

50 Aug/Sept 2002 | REALbasic Developer | www.rbdeveloper.com

Congratulates REALbasic Developer
for the inaugural issue!

Partner with us Today!

Join the Made with REALbasic program:
• Free space on the REALbasic CD
• Free distribution of announcements to

thousands of subscribers of REALnews
• Free promotion on the REALbasic website

www.realbasic.com/mwrb

®

http://www.scoo.com
http://www.realbasic.com/mwrb

FrontBase™ is a robust, fully scalable, high-performance, relational database that strictly adheres
to international standards. Together with your favorite development environment, you have an
unbeatable combination!

Get REAL… with FRONTBASE

FrontBase plug-in features

• Incorporate into Mac OS (9/X) or Windows-based applications
• Full support for REALbasic database classes
• Simple administration using the built-in database management class

FrontBase Inc. — www.frontbase.com — sales@frontbase.com
Los Angeles • Seattle • Copenhagen • Distributors worldwide

FrontBase features

• Easy to embed for standalone
applications

• Zero restart time
• Backup of live databases
• Standards compliance — SQL92,

Unicode, TCP/IP…

• Instant Versioning™ for zero downtime
• Advanced security features
• Low Total Cost of Ownership
• Virtually zero administration
• License and support programs to suit

standalone to Enterprise-wide solutions

We’ve had a lot of requests for links to high-end databases, and the FrontBase Plug-in is a
great example of what our users have been asking for. We believe the power of FrontBase’s
database server technology is a perfect match for REALbasic’s powerful, but easy-to-use
development environment. — Geoff Perlman, CEO REAL Software Inc.

Using the FrontBase REALbasic database plug-in, you can create killer REALbasic applications
that utilize the full power of an industrial-strength database — as a client, or with the database
embedded in your application.

All product names and company names and logos mentioned herein are the trademarks or registered trademarks of their respective owners. Other products
and corporate names mentioned which are trademarks of a third party are used only for explanation and for the owners’ benefit and with no intent to infringe.

http://www.frontbase.com

